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Why should we care about fermions?

• Matter in made up of fermions

• Fermions are hard: the (infamous) sign-problem



Some orders of magnitude

Superconductors Neutron 
stars/Nucleus

Ultracold atoms

Mass [kg] 10-30 10-27 10-26

Density [m-3] 1030 1045 1018

Fermi temperature [K] 105 1012 10-7

𝐸𝐸𝐹𝐹 = 𝑘𝑘𝐵𝐵𝑇𝑇𝐹𝐹 =
ℏ2

2𝑚𝑚 6𝜋𝜋2𝑛𝑛 2/3



Cooling fermions
An historical perspective



1995: Bose-Einstein condensation of alkali 
vapors

Recipe: evaporative cooling in a magnetic trap.



Good vs bad collisions

• Evaporation is driven by elastic collisions

Three-body collisions (molecular recombination) 

Two-body inelastic collisions
Spin-exchange collisions.
Hyperfine changing collisions
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• Inelastic collisions hinder evaporation
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: work at low density.
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Good vs bad collisions

• Evaporation is driven by elastic collisions

Three-body collisisons (molecular recombination): work at low density.

Two-body inelastic collisions
Spin-exchange collisions.
Hyperfine changing collisions
Solution: spin polarize the atoms in a stretched state 
of maximal  angular momentum.
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The road to fermionic quantum degeneracy

• Spin-polarized Fermions do not collide at low temperature!

B. DeMarco et al. Phys. Rev. Lett. 82, 4208 (1999). 

Spin polarized potassium

Potassium spin mixture

𝜎𝜎 ∝ 𝑇𝑇2



• Potassium (40K) and Lithium (6Li) are the only alkali possessing stable 
fermionic isotopes

N.B.: non-alkali fermionic atoms (Sr, Yb, Dy, Er…) have also been cooled to quantum degeneracy, but not to 
superfluidity

Mixture ��𝐹𝐹 = 9
2

,𝑚𝑚𝐹𝐹 = 9/2,7/2 is stable (at low temperature, 

<1mK)

• Mixture with another atomic species (e.g. 7Li)
• Optical trapping of the two lowest Zeeman states in 

a far-detuned laser (+Feshbach resonance @ 832G). 



The ultracold Fermi Sea
The ideal Fermi gas



The Zero temperature Fermi gas
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Energy of a trapped Fermi gas

U measured by time of flight expansion and using virial theorem U=2Ekin. (F. Werner, PRA 2008)

( ) ( )U Ef E D E dE= ∫

T>>TF: ideal Boltzmann gas
(Equipartition Theorem)

T<<TF:
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Local Density Approximation

• What is the density profile of the cloud?

Mesoscopic volume where
thermodynamical equilibrium
is well defined (T(r),µ(r),P(r))

Equilibrium Condition: T,µ uniform.

Local Density Approximation:

hom 0( ) ( ( ), ) ( )n T Vµ µ µ= + ≡r r r

Note: this is the hydrostatic condition                                with
the Gibbs-Duhem relation dP=ndµ at constant T.  

0P n V∇ + ∇ =
z

µhom

µ0



Density profile of a trapped Fermi gas
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Zero temperature Fermi gas
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N.B. 3 1/3
0( ) (6 )N n d Nµ ω= ⇒ =∫ r r  , as before



The attractive Fermi gas
Fermionic superfluidity



DEEP POTENTIAL : stable 2-body bound state 
with binding energy Eb=-2/ma2. Many-
body ground state: BEC of molecules (a>0)

V0

Fermionic superfluidity



DEEP POTENTIAL : stable 2-body bound state 
with binding energy Eb=-2/ma2. Many-
body ground state: BEC of molecules (a>0)

SHALLOW POTENTIAL (V0<V0
*, a<0):

No 2-body bound state, but Cooper pairing
stabilized by Pauli blocking.

V0

BOSE ENSTEIN CONDENSATION AND BCS THEORY APPEAR AS TWO LIMITING CASES OF A UNIFYING THEORY:
THE BEC-BCS CROSSOVER

Fermionic superfluidity



The experimental BEC-BCS Patchwork
Bose Einstein condensates Superconductivity, helium 3, neutron stars



The experimental BEC-BCS Patchwork

M. Holland et al. , PRL (2001)



Losses in 6Li (fermions)

Predicted position of the 
resonance

Looking for Feshbach Resonances in Lithium

Bosons close to a Feshbach resonance: 
BoseNova instability (JILA)
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Scaling law
G ~ a -2.0 +/-0.8   (theory Petrov et al.               )2.55~G a−

2 body (dimers) losses mainly : decay
towards deeply bound states)

N G n N= −

3/4 atom loss requires 2 atoms of 
same spin close to each other.

Inhibition of losses in Fermi gases



2003-2018: fifteen years of strongly correlated
Fermi gases
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