Attractive fermions: the BEC-BCS crossover and the unitary gas

Frédéric Chevy

Les Houches 2018 School on Ultracold Fermions

Why should we care about fermions?

• Matter in made up of fermions

• Fermions are hard: the (infamous) sign-problem

Some orders of magnitude

	Superconductors	Neutron stars/Nucleus	Ultracold atoms
Mass [kg]	10 ⁻³⁰	10 ⁻²⁷	10 ⁻²⁶
Density [m ⁻³]	10 ³⁰	10 ⁴⁵	10 ¹⁸
Fermi temperature [K]	10 ⁵	1012	10-7

$$E_F = k_B T_F = \frac{\hbar^2}{2m} (6\pi^2 n)^{2/3}$$

Cooling fermions

An historical perspective

1995: Bose-Einstein condensation of alkali vapors

Recipe: evaporative cooling in a magnetic trap.

- Evaporation is driven by elastic collisions
- Inelastic collisions hinder evaporation

Three-body collisions (molecular recombination) : work at low density.

- Evaporation is driven by elastic collisions
- Inelastic collisions hinder evaporation

Three-body collisions (molecular recombination) : work at low density.

Two-body inelastic collisions Spin-exchange collisions. Hyperfine changing collisions

- Evaporation is driven by elastic collisions
- Inelastic collisions hinder evaporation

Three-body collisisons (molecular recombination): work at low density.

Two-body inelastic collisions Spin-exchange collisions. Hyperfine changing collisions

- Evaporation is driven by elastic collisions
- Inelastic collisions hinder evaporation

Three-body collisisons (molecular recombination): work at low density.

Two-body inelastic collisions Spin-exchange collisions. Hyperfine changing collisions

- Evaporation is driven by elastic collisions
- Inelastic collisions hinder evaporation

Three-body collisisons (molecular recombination): work at low density.

The road to fermionic quantum degeneracy

• *Spin-polarized* Fermions do not collide at low temperature!

B. DeMarco et al. Phys. Rev. Lett. 82, 4208 (1999).

 Potassium (⁴⁰K) and Lithium (⁶Li) are the only alkali possessing stable fermionic isotopes

N.B.: non-alkali fermionic atoms (Sr, Yb, Dy, Er...) have also been cooled to quantum degeneracy, but not to superfluidity

The ultracold Fermi Sea

The ideal Fermi gas

The Zero temperature Fermi gas

In a box of volume V density n=N/V: $D(E) = \frac{V}{2\pi^2} \sqrt{\frac{2m^3 E}{\hbar^6}}$

$$N = \int f(E)D(E)dE \Longrightarrow E_F = \frac{\hbar^2 k_F^2}{2m} \quad \text{with} \qquad k_F = (6\pi^2 n)^{1/3}$$

Rule of thumb: $\lambda_{\rm F} = k_{\rm F}^{-1}$ ~interparticle distance.

In a harmonic trap: $D(E) = \frac{E^2}{2(\hbar \overline{\omega})^3}$ with $\overline{\omega}^3 = \omega_x \omega_y \omega_z$

 $N = \int f(E)D(E)dE \Longrightarrow E_F = \hbar\overline{\omega}(6N)^{1/3}$

Energy of a trapped Fermi gas

U measured by time of flight expansion and using virial theorem U=2E_{kin}. (F. Werner, PRA 2008)

Local Density Approximation

• What is the density profile of the cloud?

Mesoscopic volume where thermodynamical equilibrium is well defined (T(**r**), μ (**r**),P(**r**))

Equilibrium Condition: T,µ uniform.

Local Density Approximation:

 $\mu(\mathbf{r}) = \mu_{\text{hom}}(n(\mathbf{r}), T) + V(\mathbf{r}) \equiv \mu_0$

Note: this is the hydrostatic condition $\nabla P + n\nabla V = 0$ with the Gibbs-Duhem relation dP=ndµ at constant T.

Density profile of a trapped Fermi gas

Zero temperature Fermi gas

$$\mu_{\text{hom}}(n,T=0) = \frac{\hbar^2}{2m} (6\pi^2 n)^{2/3} \implies n(r) = \frac{1}{6\pi^2} \left[\frac{2m}{\hbar^2} (\mu_0 - V(r)) \right]^{3/2}$$

Thomas-Fermi profile

The attractive Fermi gas

Fermionic superfluidity

Fermionic superfluidity

DEEP POTENTIAL : stable 2-body bound state with binding energy $E_{\rm b}$ =- \hbar^2/ma^2 . Manybody ground state: BEC of molecules (a>0)

Fermionic superfluidity

DEEP POTENTIAL : stable 2-body bound state with binding energy $E_{\rm b}$ =- \hbar^2/ma^2 . Manybody ground state: BEC of molecules (a>0)

SHALLOW POTENTIAL $(V_0 < V_0^*, a < 0)$:

No 2-body bound state, but Cooper pairing stabilized by Pauli blocking.

BOSE ENSTEIN CONDENSATION AND BCS THEORY APPEAR AS TWO LIMITING CASES OF A UNIFYING THEORY: THE BEC-BCS CROSSOVER

The experimental BEC-BCS Patchwork

Bose Einstein condensates

Superconductivity, helium 3, neutron stars

The experimental BEC-BCS Patchwork

M. Holland *et al.* , PRL (2001)

Looking for Feshbach Resonances in Lithium

Bosons close to a Feshbach resonance: BoseNova instability (JILA)

Inhibition of losses in Fermi gases

Scaling law $G \sim a^{-2.0 + / -0.8}$ (theory Petrov *et al.* $G \sim a^{-2.55}$)

3/4 atom loss requires **2 atoms of same** spin close to each other.

2 body (dimers) losses mainly : decay towards deeply bound states)

 $\dot{N} = -G\langle n \rangle N$

2003-2018: fifteen years of strongly correlated Fermi gases

Innsbruck

