ÉCOLE DE PHYSIQUE des HOUCHES

Predoc School on Ultracold Fermions

Fermions in Optical Lattices

8-9 October 2018 Joseph H Thywissen University of Toronto

Research team

Rhys Anderson Kenneth Jackson Scott Smale Matthew Taylor Vijin Venu Peihang Xu 许培航 Ben Olsen (-»Yale/NUS) Fudong Wang 汪福东 (-»南方科技大学) Stefan Trotzky (-»Metamaterials Halifax) Dave McKay (-»IBM Watson) Alma Bardon (-»Morgan Solar) Scott Beattie (-»NRC Ottawa) Fabian Böttcher (visit from Stuttgart) Theory Collaborations Frédéric Chevy (LKB/ENS) Tilman Enss (Heidelberg) Ana Maria Rey (JILA) Edward Taylor (Toronto) Zhenhua Yu 俞振华 (中山大学) Shizhong Zhang 张世忠 (HKU)

Department of Physics University of Toronto

Canadian Institute for Advanced Research

Introduction

Matter waves in free flight

(a)

Interference

Diffraction 2 ħk (b)

Hansch/Esslinger, PRL (2001)

Rolston / Phillips, Nature (1999)

Atom laser

Bouyer / Aspect, PRL (2006)

Matter waves trapped in an optical lattice

Waves trapped by waves or: particles trapped by waves or: particles trapped by particles

The Hubbard model

Atoms: counterpropagating laser beams produce a sinusoidal potential

Dominant paradigm for strongly correlated lattice fermions

Strongly coupled matter

[adapted from Y. Cao... P. Jarillo-Herrero, Nature **556**, 43 (2018)]

Fermion lattice microscopes

MPQ (2015)

Toronto (2015)

Princeton (2016)

Mott Insulator in fermions

Fermion Mott Insulator experiments: ETHZ, Munich, Harvard, MIT, Bonn, Princeton ... In-situ observation of band nsulator and Mott Insulator

Mott transition

-> in bosons

Mott shells in a lattice + harmonic trap (Greiner/Bloch 2011)

from H. Perrin

lectures

Hélène Perrin, LPL – Les Houches 2015 C

What's new with ultracold lattice Fermions?

What's new with ultracold lattice Fermions?

cf. bosons —

- Fermi statistics in equilibrium: band fills up to Fermi surface, new states such as band insulator, superfluidity requires pairing (at lower temperature)
- Many-body exchange statistics: anti-bunching, blocking, exchange interaction, singlet states
- **Spinful mixtures** necessary for contact interactions, a new degree of freedom, magnetic phases / correlations, spin currents
- **Transport paradigm**: emergent behaviour that is the signature of electronics

What's new with ultracold lattice Fermions? *cf. bosons* —

- Fermi statistics in equilibrium
- Many-body exchange statistics
- Spinful mixtures
- Transport paradigm
- cf. electrons
 - **New observables**: time-of-flight, direct imaging, complex correlators, interferometric sensitivity
 - **Optical lattice**: no phonons, known disorder (which can be small), dynamic control, non-bravais lattices
 - **Non-equilibrium** preparation, manipulation, and evolution far from thermal equilibrium...but T high!
 - Small sample trapped sample, <10² sites per edge

Transport phenomenology

- Metal
- Superconductor
- Insulator
- Quantum Hall State
- •

eg: EHTZ; EPFL; NIST/JQI

see review by Brantut, Esslinger, et al. *J Phys. Condens. Mat.* (2017)

trap

(especially: spin transport)

MIT Cambridge Rice Toronto LENS LKB

Trotzky, JHT *et al*

Roa

wierle

et al

disorder

Palaiseau LENS UIUC Munich eg: MBL

lattice

LENS ETHZ UIUC Munich MIT Princeton Toronto

. . . .

Transport under the microscope

Toronto arxiv:1712.09965

Princeton arxiv:1802.09456

MIT arxiv:1802.10018

ÉCOLE DE PHYSIQUE des HOUCHES

111)

Fermions in Optical Lattices

Antisymmetry, Pauli, Fermi-Dirac

2-body correlations in bosonic ⁴He* and fermioic ³He*

identical particles in **distinct** modes

fermions: - sign suppression "anti-bunching"

bosons: + sign enhancement "bunching"

identical particles in **a single** mode (BEC)

Summary, Topic 1

- Anticommutation relations of creation and anihilation operators lead to all fermionic properties
- Fermi blocking is just as fundamental as Fermi-Dirac statistics
- Anti-symmetrization of wave function gives antibunching of two-body correlations
- Interactions are correlation detectors, and suppressed by the "exchange interaction" for identical fermions
- Observations: g(2) function on a microchannel plate (Hanbury-Brown-Twiss like effect for fermions); reduced interactions; reduced density fluctuations

ÉCOLE DE PHYSIQUE des HOUCHES

ATT)

Fermions in Optical Lattices

Matter waves in crystals of light

What is quasi-momentum q?

Atom in Bloch state does not have a well defined momentum.

Matter-wave diffraction from standing wave

Two-photon spacings show Bragg coupling between momentum states by the lattice

