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Transport phenomenology
• Metal 
• Superconductor 
• Insulator 
• Quantum Hall State 
• …

A tool for discovery:

mystery box
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How do electrons move through materials?

Response
Force

= Conductivity



dv
dt

∝ Fv ∝ F

millennium of physics

open systems

v=0 preferred Galilean invariance

dissipation

“motion  
requires effort”

inertia



“F=ma” in a lattice?

A weak external force changes quasi-momentum q.
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“Bloch oscillations”



Wave packet dynamics

acceleration:

gives effective mass,

band     , wave-packet at

see for example J. E. Sipe, PRA 85, 053412 (2012), & references therein.

For a wave packet localised in q, 
displacement occurs at group velocity,
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s=1.4

s=4.4

s=2.3

C. Salomon et al., PRL 76, 4508 (1996)

-Cs in 852nm standing wave 
-Time-of-flight imaging

Observation of Bloch oscillations

Bloch period ~600 fs in semiconductor superlattices (observed by THz radiation)  
Never observed in natural crystal (Bloch time longer than defect sc. time)



s=1.4

s=4.4

s=2.3

C. Salomon et al., PRL 76, 4508 (1996)

-Cs in 852nm standing wave 
-Time-of-flight imaging

Observation of Bloch oscillations

Bloch period ~600 fs in semiconductor superlattices (observed by THz radiation)  
Never observed in natural crystal (Bloch time longer than defect sc. time)

• Lattice already breaks Galilean invariance,  
making v=0 “special” 

• Lattice alone does not cause dissipation 



impurities
phonons
lattice dislocations 
particle scattering

electron transport in a metal

nm

E field

Resistivity from



conductivity of atoms in an optical lattice

impurities 
phonons 
lattice dislocations 
particle scattering

µm

Force

Resistivity?

a “perfect” crystal: 
-no defects, impurities 
-inflexible: no phonons



Neglects phonons, dislocations,  
and impurities, extended w(x), …

Atoms: counter-
propagating laser 
beams produce a 
sinusoidal potential

Electrons:  
ionic lattice

collisional
interaction

hopping

Interplay of tunnelling 
and on-site interaction

The Hubbard model



AC conductivity of atoms in a lattice

Related work:
A. Tokuno and T. Giamarchi, PRL 106, 205301 (2011)
Zhigang Wu and E. Zaremba, Annals of Physics 342, 214 (2014)

Proposal: Zhigang Wu, E. Taylor, E. Zaremba, EPL 110, 26002 (2015)

periodic  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F�(t) = m!2
0�x� cos [!t]

= F�(!)e
�i!t + c.c.

F�(!) = m!2
0�x�/2



time-dependent gauge field

F = �@tA = i!A(so that                            )

F�(!) = m!2
0�x�/2The applied force

can be seen as a spatially uniform gauge field 
A(!) = m!2

0�x�/2i!

which writes time-varying phase onto hopping

where �(t) = aLA(t)/~Ĥx = �t0

X

j

e
i�
ĉ
†
j ĉj+1 + h.c

Linear response: λ ≪ 1 (no Bloch oscillations)

Pierls phase



Linear response: no Bloch oscillations

Bloch oscillations: wave packet group velocity oscillates at 
!B = aLF/~

for a static force. For a periodic force, w.p. displacement is  

But we are looking for a response at the drive frequency 
(and no other frequency). This can only be true for 

⇠ sin [(!B/!) sin!t]

!B ⌧ ! F ⌧ ~!/aLor � ⌧ 1or

-No Bloch oscillations  
-No modification of tunnelling in Floquet picture 
-Small Pierls phases
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Optical conductivity

Electrodynamics of high-Tc superconductors, Basov and Timusk, RMP (2005) and references therein.
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Relevant frequencies: 
1 THz - 103 THz

Conductivity without connection to external reservoirs



ac (“optical”) conductivity for atoms
Implementation:
1. Apply force with moving optical tweezers

Relevant frequencies: 
10 Hz - 104 Hz

XDT 2

XDT 1
y lattice

x lattice

z

displace beam with
piezo actuated mirrors

typical force: 
0.1 µeV/m



Implementation:

Image 4 central xy planes

in-situ imaging of atoms in lattices: Chicago, Hamburg, Harvard, Kyoto, MIT, 
Munich, PSU, Princeton, Strathclyde, Tokyo, Zurich, … 

Drive and observe in xy plane only.

1. Apply force with moving optical tweezers
2. Measure response with in-situ fluorescence

ac (“optical”) conductivity for atoms



High-resolution in-situ probe

1053.6 nm 
optical lattice 
(d=527 nm 
period)10-12 Torr

Atoms transported  
into lattice plane  
from MOT chamber

0.8 NA objective  
3.1 mm WD  
     = 770 nm design �

atoms

200-µm-thick window: 
reflective for lattice, but  
AR-coated for imaging

in-situ imaging of atoms in lattices: Chicago, Hamburg, Harvard, Kyoto, MIT, 
Munich, PSU, Princeton, Strathclyde, Tokyo, Zurich, … 



Response: Centre-of-mass displacement
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R↵(t) = A↵ cos [!t� �↵]Fit steady-state response to
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Response: Total particle current
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c.m. motion reveals the total current:

For a single-frequency response,

hĴ↵(t)i = NdhR̂↵i/dt

hĴ↵(t)i = J↵(!)e
�i!t + c.c. J↵(!) =

N!A↵ei�↵

2i



Conductivity!

J↵(!) = �↵�(!)F�(!)

Now that we have force & current, use Ohm’s Law:

Wu, Taylor, Zaremba, EPL (2015)

-“Optical” conductivity: intrinsically AC technique  
-Global (not local): J is the sum of all currents 
-Exact relation (no local density approx, etc.) 
-Direct measurement of conductivity (no model requ’d)



current, conductivity, and sum rules



Collisions & Galilean invariance

Free space
Total momentum conserved

Lattice
Quasi-momentum conserved.

~J = ~v1 + ~v2

~P = ~p1 + ~p2

~v = ~p/m

thus     conserved.~J

Quadratic dispersion:
vx =

2t0aL
~ sin(qxa)

~Q = ~q1 + ~q2

Tight binding dispersion:

now     not conserved.~J

Total current conserved?1

2



( )( )

2 photons 2 photons 4

(real) momentum

energy

photon 
coupling

q range  
of 1st BZ

Bloch eigenstate q is

Dispersion relation is for atom+photon quasiparticles:

|ψ⟩ =

lattice beams

Conserving total q in a collision does not conserve 
atomic momentum (and thus not particle current).



(Resonant peak: trap effect + effective mass shift)

Current damping requires breaking of Galilean 
invariance, accomplished here by the lattice.

�� �� �� �� ��� ���
�

���
���
���
���
���
���
���

ω/�π (��)

��
[σ

/σ
�]

�� �� �� �� ��� ���
�

���
���
���
���
���
���
���

ω/�π (��)

��
[σ

/σ
�]

no lattice

1 ER

3.5 ER
2.5 ER

Drive frequency,!/2⇡ (Hz)

R
e[
�
x
x
/�

0
]

on
-a
xi
s
co
n
d
u
ct
iv
it
y

W. Kohn Phys. Rev. 123, 1242 (1956)

lattice depth V/ER

Fourier
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Umklapp scattering

with umklapp scatt’g
no umklapp scatt’g
data
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filling per spin state ⟨n↑⟩
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q1 + q2 = q3 + q4 ± 2π
umklapp events:

strict q conservation:
q1 + q2 = q3 + q4

Bragg reflection of colliding pair off lattice

UK events “scattering to next BZ”

[discussion: A. Abrikosov; A. Rosch; … ]



Transport time

scattering between  
Bloch states

q1

q2

q3

q4
U

and thus cross-section scales as U2

(a)

(b)
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ĤU =
U
M ∑

q1,q2,q3

̂c†
q4↑

̂c†
q3↓

̂cq2↓
̂cq1↑

Recall that in quasimomentum basis,



f-sum (kinetic energy)

Hubbard model, TB limit:

Sxx = �a
2
L

~2 hĤ0xi = �a
2
L

~2
EK

d

independent of U

data collapse to KE:
(a)

(b)



Summary, Topic 4
• Finite conductivity in a perfect crystal arises from 

atom-atom collisions with broken Galilean 
invariance. 

• Umklapp collisions, in which a lattice photon is 
absorbed, dominates resistivity 

• A frequency sum rule connects dynamics to 
thermodynamics, and is independent of trap and 
interactions 

• Frontiers: crossing a phase transition, artificial gauge 
fields, stronger interactions, …

R. Anderson et al. arXiv:1712.09965
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Introduction 
Fermions, statistics, & exchange 
Matter waves in crystals of light 
The Hubbard model 
Transport

Fermions in Optical Lattices

Thank you for your 

attention and questions! 


