FERMI GASES IN TWO DIMENSIONS

Les Houches predoc school 9-12 October 2018

$$
[4 \times 1.5 \text { hour lectures] }
$$

FERMI GASES IN TWO DIMENSIONS
\#L. 1.

- Why study fermions in 2D?
- 2D systems are technologically useful
e.g., 2D structures form the basis of electronics (transistors) Grapheme (Nobel Prize 2010)
Layered materials such as high -temperature
superconductors (Nobel Prize 1987)
- 2D systems are challenging to treat theoretically
\rightarrow Standard approaches (mean-field theory) not reliable, no access to exact solutions like in ID.
\therefore we require benchmarks for theory \rightarrow cold atoms
- Low dimensions can lead to interesting physics!
- The "pure" 2D system
\rightarrow Consider a gas of particles confined to a 2D plane:

$$
\text { Area }=L^{2}
$$

For the moment, we forget about how this is achieved in practice, and we just focus on the idealized 2D system.

But we will rectum to this point later.
[Thickness of plane needs to be smaller than all lengthscales of interest, e.g. interparticle spacing]

- Properties of 2D
(i) Density of states is constant for a uniform system
- Consider single type of particle with mass m
- States have definite momentum \vec{k} and energy
$\varepsilon_{k}=\frac{|\vec{k}|^{2}}{2 m} \equiv \frac{k^{2}}{2 m}($ we set $\hbar=1)$
\therefore D.O.S. at energy ε is: $\rho(\varepsilon)=\frac{1}{L^{2}} \sum_{\vec{k}} \delta\left(\varepsilon-\varepsilon_{k}\right)$
\rightarrow defined so that $\frac{1}{L^{2}} \sum_{\vec{k}}=\int d \varepsilon \rho(\varepsilon)$

$$
\begin{aligned}
\text { Now since } \Delta k & =\frac{2 \pi}{L}, \frac{1}{L^{2}} \sum_{\vec{k}}=\frac{1}{(2 \pi)^{2}} \sum_{\vec{k}}(\Delta k)^{2} \underset{L \rightarrow \infty}{\longrightarrow} \frac{1}{(2 \pi)^{2}} \int d^{2} k \\
\therefore \rho(\varepsilon) & =\frac{1}{(2 \pi)^{2}} \int d^{2} k \delta\left(\varepsilon-\varepsilon_{k}\right) \\
& =\frac{1}{2 \pi} \int d k k \delta\left(\varepsilon-\varepsilon_{k}\right) \\
& =\frac{m}{2 \pi} \underbrace{\int d \varepsilon_{k} \delta\left(\varepsilon-\varepsilon_{k}\right)}_{1} \\
& \therefore \rho(\varepsilon)=\frac{m}{2 \pi}
\end{aligned}
$$

Contrast with other dimensions:

$$
\left.P_{3 D}(\varepsilon)=\frac{m^{3 / 2}}{\sqrt{2} \pi^{2}} \sqrt{\varepsilon} ; \quad P_{1 D}(\varepsilon)=\frac{1}{\pi} \sqrt{\frac{m}{2 \varepsilon}}\right]
$$

- The constant D.O.S. means that there are more states at low energies compared to 3D.
- Consequences for bound states, phase transitions....
- Example: critical temperature for BEC

$$
\text { Boson density } \begin{aligned}
n & =\frac{1}{L^{2}} \sum_{\vec{k}} \frac{1}{e^{\beta\left(\varepsilon_{k}-\mu\right)}-1} ; \quad \begin{array}{l}
\mu=\text { chemical pot. } \\
\\
\end{array} \int_{\infty} d \varepsilon \rho(\varepsilon) \frac{1}{e^{\beta(\varepsilon-\mu)}-1}
\end{aligned}
$$

ie. $n=\frac{m}{2 \pi} \int_{0}^{\infty} d \varepsilon\left[\frac{e^{\beta(\varepsilon-\mu)}}{e^{\beta(\varepsilon-\mu)}-1}-1\right]$

$$
\begin{aligned}
& =\frac{m}{2 \pi}\left[\frac{1}{\beta} \log \left(e^{\beta(\varepsilon-\mu)}-1\right)-\varepsilon\right]_{0}^{\infty} \\
& =-\frac{m}{2 \pi \beta} \log \left(\frac{e^{-\beta \mu}}{e^{-\beta \mu}-1}\right)
\end{aligned}
$$

$$
\therefore n=\frac{m}{2 \pi \beta} \log \left(\frac{1}{1-e^{\beta \mu}}\right) \Rightarrow \text { diverges as } \mu \rightarrow 0^{-}
$$

\therefore can accommodate any number of bosons in the thermal cloud at finite temperature

$$
\therefore \text { no } B E C \text { when } T>0
$$

T Alternatively, one can write:

$$
k_{B} T_{c}=\lim _{z \rightarrow 1^{-}}\left[\frac{2 \pi n}{m} \frac{1}{\log \left(\frac{1}{1-z}\right)}\right]=0
$$

where $z \equiv e^{\beta \mu}$ is the fugacity $\left.\quad\right]$
(ii) A system with contact interactions is classically scale invariant

- Consider the Hamiltonian for many particles:

$$
\hat{H}=\sum_{i} \frac{p_{i}^{2}}{2 m}+g \sum_{i<j} \delta^{(2)}\left(\vec{r}_{i}-\vec{r}_{j}\right)
$$

The scaling transformation $\vec{r} \rightarrow \lambda \vec{r}$ gives:

$$
\begin{aligned}
& p^{2} \rightarrow \frac{1}{\lambda^{2}} p^{2} \quad(\text { since } p=-i \nabla) \\
& \delta^{(2)}(\vec{r}) \rightarrow \frac{1}{\lambda^{2}} \delta(\vec{r})
\end{aligned}
$$

\therefore we obtain a simple scaling of the Hamiltonian:

$$
\hat{H} \longrightarrow \frac{1}{\lambda^{2}} \hat{H}
$$

\therefore the physics does not depend on any lengthscale (egg., interparticle spacing)

- But the contact interaction is ill-defined in the quantum problem. Once it is renommalized, the classical symmetry is broken and a lengthscale is introduced.
\rightarrow "Quantum Anomaly"
(iii) A two-body bound state exists for arbitranily weak (s-wave) attraction in 2D
[Landau + Lifshitz]
\rightarrow introduces lengthscale (size of bound state)
- Consider two distinguishable particles in centre-of-mass frame. Relative wave function $\psi(r)$ satisfies:

$$
-\frac{\nabla^{2}}{2 m_{r}} \psi+v(r) \psi(r)=E \psi(r)
$$

$v=$ interaction
$m_{r}=$ reduced mass
$E=$ energy

Transform to momentum space:

$$
\begin{aligned}
& v(r)=\frac{1}{L^{2}} \sum_{k} \tilde{v}(q) e^{i q \cdot r} ; \quad \psi(r)=\frac{1}{L} \sum_{k} \tilde{\psi}(k) e^{i k \cdot r} \\
& \frac{k^{2}}{2 m r} \tilde{\psi}(k)+\frac{1}{L^{2}} \sum_{k^{\prime}} \tilde{v}\left(k-k^{\prime}\right) \tilde{\psi}\left(k^{\prime}\right)=E \tilde{\psi}(k) \\
& \text { Now define } \eta(k)=-\frac{1}{L^{2}} \sum_{k^{\prime}} \tilde{v}\left(k-k^{\prime}\right) \tilde{\psi}\left(k^{\prime}\right)
\end{aligned}
$$ and consider bound states where $E=-\varepsilon_{B}<0$.

\therefore we have:

$$
\tilde{\psi}(k)=\frac{1}{k^{2} / 2 m_{r}+\varepsilon_{B}} \eta(k)
$$

ie., $\quad \eta(k)=-\frac{1}{L^{2}} \sum_{k^{\prime}} \frac{\tilde{v}\left(k-k^{\prime}\right)}{k^{\prime 2} / 2 m_{r}+\varepsilon_{B}} \eta\left(k^{\prime}\right) \quad$ (*)
Now consider regime where particles are nearly unbound:

$$
\begin{aligned}
& \varepsilon_{B} \rightarrow 0, \tilde{\psi}(k) \rightarrow \delta_{k, 0} \\
\therefore & \eta(k) \rightarrow-\frac{1}{L^{2}} \tilde{v}(k)
\end{aligned}
$$

\therefore (*) becomes: $\tilde{v}(k) \simeq-\frac{1}{L^{2}} \sum_{k^{r}} \frac{\tilde{v}\left(k-k^{r}\right)}{k^{\prime 2} / 2 m_{r}+\varepsilon_{B}} \tilde{v}\left(k^{\prime}\right)$

Now divide sum into small k and large k :

$$
\begin{aligned}
& \tilde{v}(k) \simeq \frac{-1}{L^{2}}\left[\tilde{v}(k) \tilde{v}(0) \sum_{k^{\prime}<k_{0}} \frac{1}{k^{\prime 2} / 2 m_{r}+\varepsilon_{B}}\right. \\
&\left.+\sum_{k^{\prime}>k_{0}} \frac{\tilde{v}\left(k-k^{\prime}\right) \tilde{v}\left(k^{\prime}\right)}{k^{\prime 2} / 2 m_{r}+\varepsilon_{B}}\right]
\end{aligned}
$$

where k_{0} is typical range over which $\tilde{v}(k)$ varies.
\therefore we have:

$$
\tilde{v}(k) \simeq \frac{m_{r}}{2 \pi} \tilde{v}(k) \tilde{v}(0) \log \left(\varepsilon_{B}\right)+\ldots
$$

Now $\log \left(\varepsilon_{B}\right) \rightarrow-\infty$ as $\varepsilon_{B} \rightarrow 0$, so first term dominates and we have:

$$
\begin{aligned}
& \tilde{v}(k) \simeq \frac{m_{r}}{2 \pi} \tilde{v}(k) \tilde{v}(0) \log \left(\varepsilon_{B}\right) \\
& \text { i.e. } \frac{2 \pi}{m_{r}} \frac{1}{\tilde{v}(0)} \simeq \log \left(\varepsilon_{B}\right)
\end{aligned}
$$

$\therefore \varepsilon_{B} \rightarrow 0$ only when $\tilde{v}(0) \rightarrow 0$
Thus, there is always a bound state when $\tilde{v}(0)<0$.
\rightarrow Argument applies to general interaction

- Qu: what happens in 30?
- Renormalization of shont-range (contact) interactions $\rightarrow v(r)=g \delta(r)$
- Equation for bound state with binding energy ε_{B} :

$$
\begin{aligned}
& \frac{k^{2}}{2 m_{r}} \tilde{\psi}(k)+\frac{9}{L^{2}} \sum_{k^{\prime}} \tilde{\psi}\left(k^{\prime}\right)=-\varepsilon_{B} \tilde{\psi}(k) \\
& \left.\rightarrow-\frac{1}{g}=\frac{1}{L^{2}} \sum_{k} \frac{1}{k^{2} / 2 m_{r}+\varepsilon_{B}}\right\} v v \text { divergent }
\end{aligned}
$$

By imposing a cut-off "by hand", we obtain:

$$
-\frac{1}{g(\Lambda)}=\frac{1}{2 \pi} \int_{0}^{\Lambda} d k \frac{k}{k^{2} / 2 m_{r}+\varepsilon_{B}}=\frac{m_{r}}{2 \pi} \log \left(\frac{\Lambda^{2} / 2 m_{r}+\varepsilon_{B}}{\varepsilon_{B}}\right)
$$

\longrightarrow allows us to write bare parameter $g(\Lambda)$ in terms of physical parameter, ε_{B}.

- Alternatively one could use the lattice model (see Werner's lectures and 1103.2851)

- In this case, momenta are restricted to the 2D Brillouin zone:

$$
\vec{k} \in\left(\frac{-\pi}{b}, \frac{\pi}{b}\right)^{2}
$$

and the interaction is now defined on one lattice site.

- Scattering with a short-range potential
- Two-body scattering problem in C.O.M. frame:
$\left(\hat{H}_{0}+\hat{V}\right)|\psi\rangle=E|\psi\rangle$
kinetic
energy

General solution (Lippman n-Schwinger):

$$
|\psi\rangle=\left(E-\hat{H}_{0}+i 0\right)^{-1} \hat{V}|\psi\rangle+\left|\psi_{0}\right\rangle
$$

unscattered wave

$$
\hat{H}\left|\psi_{0}\right\rangle=E\left|\psi_{0}\right\rangle
$$

Green's function $\hat{G}_{0}(E+i 0)$
Define T matrix:

$$
|\psi\rangle=\left(1+\hat{G}_{0} \hat{T}\right)\left|\psi_{0}\right\rangle
$$

Now $|\psi\rangle=\hat{G}_{0} \hat{V}|\psi\rangle+\left|\psi_{0}\right\rangle$, ie., $|\psi\rangle=\left(1-\hat{G}_{0} \hat{V}\right)^{-1}\left|\psi_{0}\right\rangle$

$$
\begin{aligned}
\therefore & 1+\hat{G}_{0} \hat{T}=\left(1-\hat{G}_{0} \hat{V}\right)^{-1} \Rightarrow G_{0} T-\hat{G}_{0} \hat{V}-\hat{G}_{0} \hat{V} \hat{G}_{0} \hat{T}=0 \\
& \therefore \hat{T}=\hat{V}+\hat{V} \hat{G}_{0} \hat{T}
\end{aligned}
$$

$G\left\langle k_{f}\right| \hat{T}\left|k_{i}\right\rangle$ is proportional to the scattering amplitude [see Walraven's lectures]
For the case of contact interactions, we have:

$$
\begin{gathered}
\left\langle k_{f}\right| \hat{T}(E+i o)\left|k_{i}\right\rangle=g+g^{2} \frac{1}{L^{2}} \sum_{q}^{n}\langle q| \frac{1}{E-\hat{H}_{0}+i 0}|q\rangle+\cdots \\
=\left(\frac{1}{g}-\pi(E)\right)^{-1}
\end{gathered}
$$

where $\Pi(E)=\frac{1}{L^{2}} \sum^{n}\langle q| \frac{1}{E-\hat{H}_{0}+i 0}|q\rangle=\frac{1}{L^{2}} \sum^{n} \frac{1}{E-q^{2} / 2 m_{r}+i o}$

Using the expression for $g(\Lambda)$, we finally obtain (in the limit $\Lambda \rightarrow \infty$):

$$
T(E) \equiv\left\langle k_{f}\right| \hat{T}(E+i 0)\left|k_{i}\right\rangle=\frac{2 \pi}{m_{r}} \frac{1}{\log \left(\varepsilon_{B} \mid E\right)+i \pi}
$$

* Notable features:
-There is always a pole, $E=-\varepsilon_{B}$, ie., a bound state
-The scattering goes to zero when $E \rightarrow 0$ (unlike in 3D)
- Non-monotenic function of energy with maximum in $\operatorname{Re}[T(E)]$ at $E=\varepsilon_{B}$
[Ref: 1408.2737]
* Scattering amplitude:

$$
\begin{aligned}
f(k) & =2 m_{r} T\left(k^{2} / 2 m_{r}\right) \\
& =\frac{4 \pi}{\log \left(2 m_{r} \varepsilon_{B} / k^{2}\right)+i \pi}
\end{aligned}
$$

$k=$ relative momentum
i.e., $f(k)=\frac{2 \pi}{\log \left(1 / k a_{2 D}\right)+i \pi / 2}, \quad \varepsilon_{B}=\frac{1}{2 m_{r} a_{2 D}^{2}}$

- 2D scattering length $a_{2 D}>0$ (one convention)
- Logarithmic dependence on length scale $a_{2 D}$
\therefore weak violation of classical scale invariance
\rightarrow Quantum anomaly (see, e.g., O1shanii et al., 1006.1072)
\#L. 2
- BCS-BEC Crossover in 2D

Consider two-component (\uparrow, \downarrow) Fermi gas in uniform space

- equal masses $\left(m_{\downarrow}=m_{\uparrow} \equiv m\right)$
- equal spin populations ($n_{\uparrow}=n_{\downarrow} \equiv n / 2 ; \mu_{\uparrow}=\mu_{\downarrow} \equiv \mu$)
- attractive contact interactions (s wave)
- Hamiltonian:

$$
\hat{H}-\mu \hat{N}=\hat{H}_{0}-\mu \hat{N}+\hat{H}_{\text {int }}
$$

where $\hat{H}_{0}-\mu \hat{N}=\sum_{k, \sigma}\left(\varepsilon_{k}-\mu\right) c_{k \sigma}^{+} c_{k \sigma}$

$$
\begin{aligned}
\hat{H}_{\text {int }}= & \frac{g}{\Omega} \sum_{k, k_{1}^{\prime} q} C_{k+q / 2 \uparrow}^{+} C_{k+q / 2 \downarrow}^{+}{ }^{C}-k_{k+q / 2 \downarrow}^{\prime} C_{k}^{\prime}+q / 2 \uparrow \\
& \text { system volume/area }
\end{aligned}
$$

In 3D, the BCSregime is when $a_{s}<0$, i.e, no bound state [cherylect.]
How do we achieve a crossover in 2D, where there is always a bound state?
\rightarrow By varying the ratio $\varepsilon_{B} / \varepsilon_{F}$:

$$
\begin{aligned}
& \varepsilon_{B} / \varepsilon_{F} \ll 1, B C S \\
& \varepsilon_{B} / \varepsilon_{F} \gg 1, B E C
\end{aligned}
$$

\rightarrow Can have a density-driven crossover
(i) Variational wave function approach

- Take boson operator $b_{q}^{+}=\sum_{k} \varphi_{k} c_{k+q / 2 \uparrow}^{+} c_{-k+q / 2 \downarrow}^{f}$
- Coherent state:

$$
|\psi\rangle=N e^{\lambda b_{0}^{+}}|0\rangle=N e^{\lambda \sum_{k} \varphi_{k} c_{k \uparrow}^{t} c_{k \downarrow}^{+}}|0\rangle
$$

τ normalization

$$
\therefore|\psi\rangle=\prod_{k}\left(u_{k}+v_{k} c_{k \uparrow}^{+} c_{k \downarrow}^{+}\right)|0\rangle
$$

where $v_{k} / u_{k}=\lambda \varphi_{k}, \mathcal{N}=\prod_{k} u_{k}, \frac{u_{k}^{2}+v_{k}^{2}}{\longrightarrow \text { why real? }}$
$\rightarrow B C S$ wave function is smoothly connected to coherent state of bosons (BEC)

Note that $\langle\psi| c_{k \sigma}^{+} C_{k \sigma}|\psi\rangle=v_{k}^{2} \rightarrow$ momentum distribution for each spin
Qu: how does v_{u}^{2} look in BEC limit?

Increasing density:

- Free energy:

$$
\begin{aligned}
F=\langle\psi|(\hat{H}-\mu \hat{N})|\psi\rangle= & 2 \sum_{k}\left(\varepsilon_{k}-\mu\right) v_{k}^{2}+\frac{g}{\Omega} \sum_{k_{1} k^{\prime}} v_{k} u_{k} v_{k^{\prime}} u_{k^{\prime}} \\
& +\underbrace{\frac{g}{\Omega} \sum_{k_{1} k^{\prime}} v_{k}^{2} v_{k^{\prime}}^{2}}_{g n^{2} \rightarrow 0}
\end{aligned}
$$

- Minimize F w.r.t. u_{u}, v_{u} at fixed μ :
with constraint $u_{k}^{2}+v_{u}^{2}=1 \rightarrow v_{k}=\sin \theta_{k}, u_{k}=\cos \theta_{l e}$
(*) $2\left(\varepsilon_{k}-\mu\right) u_{k} v_{k}+\left(u_{k}^{2}-v_{k}^{2}\right) \frac{g}{\Omega} \sum_{k^{\prime}} u_{k^{\prime}} v_{k^{\prime}}=0$
In the limit $v_{k} \rightarrow 0$, we recover the 2-body equation:

$$
2 \varepsilon_{k} v_{k}+\frac{9}{\Omega} \sum_{k^{\prime}} v_{k \prime} \simeq 2 \mu v_{k}, \quad \therefore 2 \mu \simeq-\varepsilon_{B}
$$

Defining $\Delta=\frac{-g}{\Omega} \sum_{k} u_{k} v_{k}, \xi_{k}=\varepsilon_{k}-\mu$, Eq.(*) then gives:

$$
\begin{aligned}
& \frac{u_{k} v_{k}}{u_{k}^{2}-v_{k}^{2}}=\frac{\Delta}{2 \xi_{k}}=\frac{1}{2} \frac{\sin 2 \theta}{\cos 2 \theta} \\
& \hookrightarrow \sin 2 \theta=\frac{\Delta}{\sqrt{\xi_{k}^{2}+\Delta^{2}}} \rightarrow u_{k} v_{k}=\frac{\Delta}{2 \sqrt{\xi_{k}^{2}+\Delta^{2}}} \\
& \cos 2 \theta=u_{k}^{2}-v_{k}^{2}=\frac{\xi_{k}}{\sqrt{\xi_{k}^{2}+\Delta^{2}}} \\
\therefore \quad \Delta= & -\frac{9}{\Omega} \sum_{k} \frac{\Delta}{2 \sqrt{\xi_{k}^{2}+\Delta^{2}}}
\end{aligned}
$$

Likewise we can solve for v_{k}^{2} in terms of Δ and ξ_{k} thus we end up with the equations:
(1) $-\frac{1}{g}=\frac{1}{\Omega} \sum_{k} \frac{1}{2 \sqrt{\varepsilon_{k}^{2}+\Delta^{2}}} \quad$ "Gap equ"
(2) $n_{\sigma}=\frac{1}{2 \Omega} \sum_{k}\left(1-\frac{\xi_{k}}{\sqrt{\xi_{k}^{2}+\Delta^{2}}}\right)$ Density/number eq'n

* Note that Δ gives a measure of fermion paining, since it is easy to show that: $\Delta=\frac{-9}{\Omega} \sum_{k}\left\langle c_{k \uparrow}^{+} c_{-k \downarrow}^{+}\right\rangle$
- Replace $g(\Lambda)$ using T matrix
- For 2D, we replace with ε_{B} :

$$
\frac{1}{g}=\underbrace{T^{-1}\left(-\varepsilon_{B}\right)}_{0}+\pi\left(-\varepsilon_{3}\right)
$$

ie. $\frac{1}{9}=\pi\left(-\varepsilon_{B}\right) \quad$ (same as before)

- For 3D, we instead have:

$$
\begin{aligned}
& \frac{1}{g}=\underbrace{T^{-1}(0)}_{\frac{m}{4 \pi a_{s}} \leftarrow \text { 3D scattering length }}+\pi(0)
\end{aligned}
$$

- Solving (1) and (2) in 2D gives:

$$
\begin{aligned}
& \Delta=\sqrt{2 \varepsilon_{F} \varepsilon_{B}} \\
& \mu=\varepsilon_{F}-\varepsilon_{B / 2} \quad\left[\text { with } \quad \varepsilon_{F}=\frac{k_{F}^{2}}{2 m}=\frac{2 \pi n_{\sigma}}{m}\right]
\end{aligned}
$$

- In the BCS limit, $\mu \simeq \varepsilon_{F}$; while in the BEC limit $\mu \rightarrow-\varepsilon_{B / 2}$ (nigh density)
(low density)
Qu: what are the dimer-dimer interactions in the BEC limit?
\rightarrow Dimer chemical potential $\mu_{d}=2 \mu+\varepsilon_{B} \simeq g_{d d} n_{d}$
\therefore since we have $\mu_{d}=\varepsilon_{F}$ and $n_{d}=n_{\sigma}$, we get:
$g_{d d}=\frac{4 \pi}{m} \rightarrow$ classically scale invariant; theory misses quantum anomaly!
(ii) Alternative derivation - mean-field approach
- Assume fermion paining dominates, such that we can describe if using the mean field:

$$
\Delta=-\frac{g}{\Omega} \sum_{k}\left\langle c_{k \uparrow}^{+} c_{-k \downarrow}^{+}\right\rangle \quad \text { (like previously) }
$$

White operators as:

$$
-\frac{g}{\Omega} \sum_{k} C_{k+q / 2 \uparrow}^{+} C_{k+q / 2 \downarrow}^{+}=\Delta \delta_{q_{0}}+\delta \hat{\Delta}_{q}
$$

where $\delta \hat{\Delta}_{q}=-\Delta \delta_{q_{1} 0}-\frac{9}{\Omega} \sum_{k} c_{k+q / 2 \uparrow}^{t} c_{k+q / 2 \downarrow}^{+}$

- Now expand $\hat{H}_{\text {lint }}$ up to linear order in $\delta \hat{\Delta}$:

$$
\begin{aligned}
& \hat{H}_{\text {int }}=\frac{g}{\Omega} \sum_{k, k^{\prime}, q} C_{k+q / 2 \uparrow}^{\dagger} C_{k+q / 2 \downarrow}^{+}{ }_{-}^{C}-k^{\prime}+q / 2 \downarrow C^{\prime}+q / 2 \uparrow \\
& =\frac{\Omega}{g} \sum_{q}\left|\Delta \delta q_{10}+\delta \hat{\Delta}_{q}\right|^{2} \\
& \simeq \frac{\Omega}{g} \Delta^{2}+\Delta \delta_{q, 0}\left(\delta \hat{\Delta}_{q}+\delta \hat{\Delta}_{q}^{*}\right) \\
& =-\frac{\Omega}{g} \Delta^{2}-\Delta \sum_{k} C_{k \uparrow}^{\dagger} c_{k \downarrow}^{\dagger}-\Delta \sum_{k} C_{k \downarrow} C_{k \tau}
\end{aligned}
$$

\therefore we have mean-field Hamiltonian:

$$
\begin{aligned}
\hat{H}_{M F} & =-\frac{\Omega}{9} \Delta^{2}+\sum_{k}\left(\varepsilon_{k}-\mu\right) c_{k \sigma}^{+} c_{k \sigma}-\Delta \sum_{k} c_{k \uparrow}^{+} c_{k \downarrow}^{+}-\Delta \sum_{k} c_{k \downarrow} c_{k \uparrow} \\
& =-\frac{\Omega}{9} \Delta^{2}+\sum_{k} \Psi_{k}^{+}\left(\begin{array}{cc}
\varepsilon_{k}-\mu & \Delta \\
\Delta & \mu-\varepsilon_{k}
\end{array}\right) \Psi_{k}+\sum_{k}\left(\varepsilon_{k}-\mu\right)
\end{aligned}
$$

where $\Psi_{k}^{+}=\left(C_{k \uparrow}^{+}, C_{k \downarrow}\right)$
Diagonalize Hamiltonian using transformation:

$$
\binom{\gamma_{k \uparrow}^{+}}{\gamma_{-k \downarrow}}=\left(\begin{array}{cc}
u_{k} & -v_{k} \\
v_{k} & u_{k}
\end{array}\right)\binom{c_{k \uparrow}^{+}}{c_{-k \downarrow}} \quad \text { (exercise!) }
$$

ie. $\hat{H}_{M F}=\frac{-\Omega}{g} \Delta^{2}+\sum_{k}\left(\varepsilon_{k}-\mu\right)+\sum_{k}\left(E_{k} \gamma_{k \uparrow}^{+} \gamma_{k \uparrow}-E_{k} \gamma_{k d} \gamma_{k d}^{+}\right)$

$$
=-\frac{\Omega}{g} \Delta^{2}+\sum_{k}\left(\varepsilon_{k}-\mu-E_{k}\right)+\sum_{k} E_{k}\left(\gamma_{k \uparrow}^{+} \gamma_{k \uparrow}+\gamma_{k \downarrow}^{+} \gamma_{k l}\right)
$$

where $E_{k}=\sqrt{\xi_{k}^{2}+\Delta^{2}}$

Lowest energy comesponds to $\left\langle\gamma_{k_{\sigma}}^{t} \gamma_{k_{\sigma}}\right\rangle=0$
$\therefore \gamma_{k o}^{t}$ create quasiparticle excitations (unpaired)
Qu: what is the ground state wave function?
$\left|\psi_{G s}\right\rangle \propto \prod_{k} \gamma_{k \uparrow} \gamma_{k \downarrow}|0\rangle$ since this guarantees $\gamma_{k \sigma}\left|\psi_{G s}\right\rangle=0$ $\uparrow_{\text {vacuum }}$ state for original operators

$$
=\prod_{k} v_{k}\left(u_{k}+v_{k} C_{k \uparrow}^{+} C_{k \downarrow}^{+}\right)|0\rangle
$$

\therefore (normalized) ground state is the BCS wave function:

$$
\left|\psi_{G S}\right\rangle=\prod_{k}\left(u_{k}+v_{k} c_{k r}^{t} c_{-k \downarrow}^{t}\right)|0\rangle
$$

\rightarrow Quasiparticle excitation energy: $E_{k}=\sqrt{\left(\varepsilon_{k}-\mu\right)^{2}+\Delta^{2}}$

$$
\mu<0
$$

\rightarrow Qualitative change in excitation spectrum @ $\mu=0$
$\therefore \mu=0$ marks "crossover point" between BCS and BEC
Within 2DMFT, $\mu=0 \rightarrow \varepsilon_{F}=\varepsilon_{B / 2} \rightarrow \log \left(k_{F} a_{2 D}\right)=0$
\#L. 3

* Limitations of mean-field theory
- Dimer-dimer interaction is classically scale invariant \rightarrow no quantum anomaly
- No normal state interactions . : misses behaviour at weak attraction:

$$
\mu=\varepsilon_{F}-\frac{\varepsilon_{F}}{\log \left(k_{F} a_{2 D}\right)}+\cdots, \quad \log \left(k_{F} a_{2 D}\right) \gg 1
$$

- MFT has condensed pairs (ie., $\Delta \neq 0$) at finite T.
- Paining at finite temperature
- We have already seen that bosons do not condense at finite T in 2D (for infinite system) Similarly, one can also show that $\Delta \neq 0$ only when $T=0$
- However, interacting system is superfluid for temperatures below a critical temperature T_{c}

Associated with "quasi condensation":

$$
T<T_{c}
$$

condensation in local finite-sized regions no phase coherence between regions. ${ }^{2}$ no global condensation

- In BEC regime, T_{c} is determined by interactions between dimers
(boson-boson interactions)
\Rightarrow BKT transition
[Berezinskii, Kosterlitz, Thales, 1970's]
- In BCS limit, T_{c} is set by energy required to breale pairs
smallest energy scale
- For BCS case, we can estimate T_{c} using BCS mean-field theory since this captures pair breaking at finite T.
[Also, system is close to being condensed]
- Mean-field grand potential (for fixed T, μ, Ω):

$$
\Phi_{M F}=-\frac{1}{\beta} \log \left(\operatorname{Tr}\left[e^{-\beta \hat{H}_{M F}}\right]\right)
$$

$$
=-\frac{\Omega}{g} \Delta^{2}+\sum_{k}\left(\varepsilon_{k}-\mu-E_{k}\right)-\underbrace{-\frac{2}{\beta} \sum_{k} \log \left(1+e^{-\beta E_{k}}\right)}_{\text {nen-interacting gas }}
$$

\rightarrow minimum at non-zero Δ
[SF phase]
$T>T_{c}$

\rightarrow minimum at $\Delta=0$
[Nominal phase]

- Expand Φ close to $\Delta=0$:

$$
\Phi_{M F}=\alpha \Delta^{2}+\eta \Delta^{4}+\ldots
$$

[Qu: why even powers?]
Transition corresponds to $\alpha=\left.0 \Rightarrow \frac{\partial \Phi_{M F}}{\partial \Delta^{2}}\right|_{\Delta=0}=0$
\therefore we have:

$$
-\frac{\Omega}{9}-\left.\sum_{k} \frac{1}{2 E_{u}}\left(1-\frac{2}{1+e^{\beta E_{u}}}\right)\right|_{\Delta=0}=0
$$

ie. $\quad \frac{-\Omega}{g}=\sum_{k} \frac{1}{2\left|\xi_{k}\right|}\left(1-\frac{2}{1+e^{\beta\left|\xi_{k}\right|}}\right)$

$$
=\sum_{k} \frac{1}{2 \xi_{k}}\left(1-\frac{2}{1+e^{\beta \xi k}}\right) \quad \text { (check this) }
$$

In the limit $\varepsilon_{B} \ll \varepsilon_{F}$, this yields:

$$
T_{c}=\frac{e^{\gamma}}{\pi} \underbrace{\sqrt{2 \varepsilon_{F} \varepsilon_{B}}}_{\text {zero T paining gap }} \quad \gamma \equiv \begin{aligned}
& 0.5772 \ldots . \\
& \text { (Euler's constant) }
\end{aligned}
$$

- Dimers become non-interacting as $\log \left(k_{F} a_{2 D}\right) \rightarrow-\infty$
$\therefore T_{c} \rightarrow 0$ (not captured by MFT)
- Maximum T_{C} around $\log \left(k_{F} a_{2 D}\right) \simeq 0$.
- "Pseudogap"region?
- Just above T_{c} we have:
(1) Bose liquid when $\varepsilon_{B} / \varepsilon_{F} \gg 1, \log \left(k_{F} a_{2 D}\right) \rightarrow-\infty$
(2) Fermi liquid when $\varepsilon_{B} / \varepsilon_{F} \ll 1, \log \left(k F a_{20}\right) \rightarrow+\infty$
\rightarrow what happens inbetween?
- The term "psendogap" comes from the gap-like feature observed in density of states of high-temperature superconductors above T_{c}
- Basic question is whether such a psendogap can be produced by fermion paining without superconductivity/superfluidity
\rightarrow Test with 2D Fermi gas, but to reproduce phenomenology we require a Fermi surface as well as preformed pairs $\Rightarrow \mu>0$

Bose liquid

\rightarrow Experimental evidence for such paining above $T_{c}: 1705.10577$

- Remaining question: does paining above T_{c} necessarily give a pseudogap in the density of states?
- Equation of state above T_{c}
- For $T / T_{F} \rightarrow \infty$, we have $\beta \mu \rightarrow-\infty$

Eeg., for non-interacting Fermi gas:

$$
n_{k}=\frac{1}{1+e^{\beta\left(\varepsilon_{k}-\mu\right)}} \xrightarrow[\beta \mu \rightarrow-\infty]{ } e^{-\beta\left(\varepsilon_{k}-\mu\right)}
$$

- recover classical Boltzmann gas at high T-1
\therefore in high T limit, $z \equiv e^{\beta \mu} \ll 1$, so we can treat the fugacity z perturbatively
- Grand potential $\Phi=\frac{-1}{\beta} \log Z$
where partition function $Z=\operatorname{Tr}\left[e^{-\beta(\hat{H}-\mu \hat{N})}\right]$
Since \hat{H} conserves no. of particles, we can rewrite this as:

$$
Z=\sum_{N} \underbrace{e^{\beta \mu N}}_{z^{N}} \underbrace{\operatorname{Tr}_{N}\left[e^{-\beta \hat{H}}\right]}_{\text {trace over states }} \equiv \sum_{N} z^{N} B_{N}
$$

in N -body cluster
\therefore we have expansion in fugacity, i.e., the viral expansion:

$$
\begin{gathered}
Z=1+z B_{1}+z^{2} B_{2}+z^{3} B_{3}+\cdots \\
\Rightarrow B_{1}=2 \sum_{k} e^{-\beta \varepsilon_{k}}=2 L^{2} \rho \int_{0}^{\infty} d \varepsilon e^{-\beta \varepsilon}=\frac{2 L^{2} \rho}{\beta}=\frac{2 L^{2}}{\lambda^{2}} \\
\lambda \equiv \sqrt{2 \pi / m T}
\end{gathered}
$$

\therefore we have $\Phi=-\frac{1}{\beta} \log \left[1+\sum_{N \geqslant 1} z^{N} B_{N}\right]$

$$
\begin{aligned}
& =-\frac{1}{\beta}\left[\sum_{N \geqslant 1} z^{N} B_{N}-\frac{1}{2}\left(\sum_{N \geqslant 1} z^{N} B_{N}\right)^{2}+\frac{1}{3}\left(\sum_{N \geqslant 1} z^{N} B_{N}\right)^{3}+\ldots\right] \\
& =-\frac{1}{\beta}\left[B_{1} z+\left(B_{2}-\frac{1}{2} B_{1}^{2}\right) z^{2}+\left(B_{3}-B_{1} B_{2}+\frac{1}{3} B_{1}^{3}\right) z^{3}+\ldots\right]
\end{aligned}
$$

- Remarkably, all terms scale as L^{2} (higher powers of area cancel)
\therefore the convention is to write it as:

$$
\Phi=-\frac{1}{\beta} B_{1}\left[b_{1} z+b_{2} z^{2}+b_{3} z^{3}+\ldots\right]
$$

where b_{j} are the (dimensionless) viral coefficients.
\rightarrow Leading order term (with $b_{1}=1$) is an ideal classical gas
\rightarrow Interactions + statistics only enter at order z^{2}

- Total density:

$$
n=n_{\uparrow}+n_{\downarrow}=-\left.\frac{1}{L^{2}} \frac{\partial \Phi}{\partial \mu}\right|_{T, L^{2}}=\frac{2}{\lambda^{2}} \sum_{j \geqslant 1} j b_{j} z^{j}
$$

Non-interacting Fermi gas: $\quad b_{j}^{(0)}=(-1)^{j-1} \frac{1}{j^{2}}, j \geqslant 1$
(exercise!)

- Contribution from interactions: $\Delta b_{2}=b_{2}-b_{2}^{(0)}$

- Density profile in trap \Rightarrow equation of state

Local density approx: : $\mu(r)=\mu_{0}-V(r) ; \quad r^{2}=x^{2}+y^{2}$
\therefore by locally measuring density, we obtain $n(\mu)$ at fixed T, ε_{B}
. 2D Fermi gas $E_{0} S\left(T>T_{C}\right)$:

$\rightarrow n_{0}$ is density of non-interacting Fermi gas at same $\beta \mu$
\Rightarrow Non-monotonic behaviour unlike 3D unitary FG!

- Crossover from classical to quantum \Rightarrow quantum anomaly
- Recently observed in experiments (Swinburne, Heidelberg)

$$
[\text { see my Viewpoint, Physics 9, } 10 \text { (2016) }]
$$

\#14
[Ref: 1408.2737]

- The quasi-2D system
- In reality, we live in a 3D world, so we must confine fermions to 2D plane using trapping potential $V_{\perp}(z)$

$-2 D$ regime: $\quad \varepsilon_{F}, T \ll \omega_{\perp}$

Limit of deep potential: $V_{\perp}(z) \simeq \frac{1}{2} m \omega_{z}^{2} z^{2}$

OR $1 / k_{F}, \lambda \gg l_{z}$, where $l_{z}=\sqrt{\frac{1}{m \omega_{z}}}, \lambda=\sqrt{\frac{2 \pi}{m T}}$

- What about interactions?
\rightarrow Real shout-range interactions are 3D.
\rightarrow Leads to scattering into higher harmonic levels.
- Consider two-body problem (equal masses) 3D position

$$
\sum_{i=1,2}\left[-\frac{1}{2 m} \nabla_{i}^{2}+V_{\perp}\left(z_{i}\right)\right] \Psi\left(\overrightarrow{r_{1}}, \vec{r}_{2}\right)+g_{3 D}\left(\vec{r}_{1}-\vec{r}_{2}\right) \Psi\left(\overrightarrow{r_{1}}, \overrightarrow{r_{2}}\right)=E \Psi
$$

Now harmonic potential is separable into relative + C.O.M. coordinates (if frequencies are the same):

$$
V_{\perp}\left(z_{1}\right)+V_{\perp}\left(z_{2}\right)=\frac{1}{2} m_{r} w_{z}^{2} z^{2}+\frac{1}{2} M w_{z}^{2} z_{M}^{2}
$$

\therefore we can just consider eq'n in C.O.M. frame:

$$
\left(m_{r}=\frac{m}{2}, M=2 m\right)
$$

$$
\left[-\frac{1}{2 m_{r}} \nabla_{\rho}^{2}-\frac{1}{2 m r} \frac{d^{2}}{d z^{2}}+\frac{1}{2} m_{r} \omega_{z}^{2} z^{2}+g_{3 D}(\vec{r})\right] \psi(\vec{\rho}, z)=E \psi(\vec{\rho}, z),
$$

where $\vec{\rho}=(x, y)$

Non-interacting eigenstates: $|\vec{k}, n\rangle \equiv e^{i \vec{k} \cdot \vec{e}} \underbrace{\phi_{n}(z)}_{\text {H.O. eigenstates }}$
ie. non-interacting Hamiltonian:

$$
\hat{H}_{0}=\sum_{\vec{k}, n}\left[\frac{k^{2}}{2 m_{r}}+(n+1 / 2) w_{z}\right]|\vec{k} n\rangle\langle\vec{k} n|
$$

and interacting part (area set to 1):

$$
\hat{H}_{\text {int }}=\sum_{k_{1} n_{1}} \underbrace{\left\langle k_{1} n_{1}\right| \hat{g}_{3 D}\left|k_{2} n_{2}\right\rangle}_{k_{2} n_{2}}\left|k_{1} n_{1}\right\rangle\left\langle k_{2} n_{2}\right|
$$

$$
g_{3 D} \phi_{n_{1}}(0) \phi_{n_{2}}(0)
$$

Consider two-body bound state:

$$
\left|\psi_{2}\right\rangle=\sum_{k, n} \eta(k, n)|k, n\rangle
$$

Now we have:

$$
\left(\hat{H}_{0}+\hat{H}_{\text {int }}\right)\left|\psi_{2}\right\rangle=E\left|\psi_{2}\right\rangle
$$

\therefore projecting onto $|\vec{k} n\rangle$ gives:

$$
\left[\frac{k^{2}}{2 m_{r}}+\left(n+\frac{1}{2}\right) w_{z}\right] \eta(k, n)+g_{30} \phi_{n}(0) \underbrace{\sum_{k, n^{\prime}} \phi_{n^{\prime}}(0) \eta\left(k, n^{\prime}\right)}_{\text {constant } f}=E \eta(k, n)
$$

i.e., $\eta(k, n)=\frac{g_{30} \phi_{n}(0) f}{E-k^{2} / 2 m_{r}-(n+1 / 2) \omega_{z}}$
i.e. $f=\sum_{k, n} \frac{g_{30}\left|\phi_{n}(0)\right|^{2} f}{E-k^{2} / 2 m_{r}-\left(n+y_{2}\right) w_{z}}$
\therefore we finally get:

$$
\frac{-1}{g_{3 D}}=\sum_{k_{1} n} \frac{\left|\phi_{n}(0)\right|^{2}}{k^{2} / 2 m_{r}+(n+1 / 2) w_{z}-E}
$$

N.B. even n only since $\phi_{n}(0)=0$ when n odd

But $\frac{1}{g_{3 D}}=\underbrace{\frac{m r}{2 \pi a_{s}}}_{T_{3 D}^{-1}(0)}-\sum_{k_{3 D}} \frac{1}{k_{3 D}^{2} / 2 m_{r}}$
3D momentum without potential
\therefore cannot neglect sum over $n \rightarrow$ cancels UV divergence
After some clever manipulations, one obtains:

$$
\frac{l_{z}}{a_{s}}=F\left(-E / w_{z}+1 / 2\right)
$$

where $\tilde{F}(x)=\int_{0}^{\infty} d u \frac{1}{\sqrt{4 \pi u^{3}}}\left[1-\frac{e^{-x u}}{\sqrt{\left(1-e^{-2 u}\right) / 2 u}}\right]$
For $|x| \ll 1$:

$$
\widetilde{F}(x) \simeq \frac{1}{\sqrt{2 \pi}} \log (\pi x / B)+\frac{\log (2)}{\sqrt{2 \pi}} x+\cdots, B \simeq 0.905
$$

\Rightarrow Always a solution for any 3D scattering length as
(.e. there is always a bound state in quasi-2D, even when there are none in 3D.
[Qu: how is this possible?]

Keeping lowest order (2D) term in $\tilde{F}(x)$, we have binding energy:

$$
\varepsilon_{B} \equiv-E+\frac{1}{2} w_{z} \simeq \frac{w_{z} B}{\pi} \exp \left(\sqrt{2 \pi} l_{z} / a_{S}\right)
$$

\rightarrow corresponds to limit $l_{z} / a_{s} \ll-1$.

- Two-body energy across interaction range:

- The quasi-2D T matrix is:

$$
\tau(E)=\frac{\sqrt{2 \pi}}{m_{r}}\left[\frac{l_{z}}{a}-\tilde{F}\left(-E / w_{z}+1 / 2\right)\right]^{-1}
$$

\Rightarrow when $\left|-E / w_{z}+1 / 2\right| \ll 1$, we recover 2D expression:

$$
\tau(E) \simeq \frac{2 \pi}{m_{r}}\left[\log \left(\frac{1}{2 m_{r} a_{2 D}^{2} E}\right)+i \pi\right]
$$

where

$$
a_{2 D}=l_{z} \sqrt{\frac{\pi}{B}} \exp \left(-\sqrt{\frac{\pi}{2}} \frac{l_{z}}{a_{s}}\right) \quad \text { Petror }+S, 2001
$$

- Points to note:
- We require $l_{z} / a_{S} \ll-1$ for bound state to be 2D, with $\varepsilon_{B} \simeq \frac{1}{2 m_{r} a_{2 D}^{2}}$
- We require collision energy $\varepsilon \equiv E-\frac{1}{2} \omega_{z} \ll 1$ to have 2D scattering states \rightarrow relevant parameter is $a_{2 D}$ not ε_{B} !
- When $\left|a_{s}\right| \ll l_{z}$, there is a large range of energies such that:

$$
\tau(\varepsilon) \simeq \frac{\sqrt{2 \pi}}{m_{r}} \frac{a_{s}}{l_{z}} \rightarrow \begin{array}{r}
\text { independent of } \varepsilon, \\
\text { recovers scale invariance! }
\end{array}
$$

OUTLOOK:

- What interesting physics lies in the crossover between 2D and 3D? e.g., is T_{c} for superfluidity maximal in between?

