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⑦

µ⇒
FERMI GASES IN TWO DIMENSIONS

a-
Why study fermions in 2B ?

- 2 D systems are technologically useful
e. g.  ,

2 D structures form the basis of electronics ( transistors )
GrapheneC.Nobel Prize 2010 )

Layered materials such as high - temperature
superconductors ( Nobel Prize 1987 )

- 2 D systems are challenging to treat theoretically
↳ Standard approaches ( mean - field theory ) not reliable

,

no access to exact solutions like in ID
.

.

e

. we require benchmarks for theory → coldatoms

- how dimensions can lead to interesting physics !

• the "

pure
" LD system

↳
Consider a gas of particles confined to a 2 D plane :

x Area = L2
I

1- → y

For the moment
,

we forget about how this is achieved in

practice ,
and we just focus on the idealized3D

system .Bet
we will return to this point later

.

[ Thickness of plane needs to be smaller than

all length scales of interest
, e.g . inter particle spacing )



②

• Properties of LD

Cil Density of states is constant for aiemfonmsystem
- Consider single type of particlewith ,

mass m

- States have definite momentum he and energy
Eu =

ahem ( we set a = 1)

i
.

D .
o .

s
. at energy E is : f (E) = tfor( E - Eu )

↳
defined so that I If = Jd E f (E)

Now since Dk = If , Iz Ef = g÷ fake)
'

Iny÷ Idki. f (E) =  
I Jdk or(E - Eu).

.

GIT

= 2¥ Jdk k or CE - Eh )
← dew = Im dk

= Mq f d Eu 8 (E - Eu )
-

I

i. f Ce ) = Fit
Contrast with other dimensions :

\ hole ) = rFz VI i hole) = ¥ IFI )

- the constant D. o . s
.

means that there are

more
states

at low

energiescompared to 3D
.

- Consequences for bound states
, phase transitions

,
.

. .



③

. Example

:
criticaltemperature for BEC

Boson density n = I -1
; µ = chemical pot .

I ¥effete - M - I
p =

YT
,

fees =D
= fDEKE ) epce-

D

Ie .

n =

amp . f def eke - m

° ¥-1
- I ]

= riff flogfence
- Mt ) - e )

'

= -

Empires

°

i
.

n = zmitplogfilepm) ⇒ diverges as µ → o
-

i
. can

accommodate

any number of bosons in the

thermal cloud at finite temperature

i
. no BEC when T > O

T

Alternatively

,
one can write :

KB
Te = tiny 121¥wg ) = 0

Z
I - z

where Z  = em is the fugacity J



④

fitA system with contact interactions is classically scaleinrariant

- Consider the Hamiltonian for many particles :

it = § fin + g §
,

or
"

Ei - F;)

The scaling transformation it → IF gives :

p2 → ta p
'

( since p  = - it )

or
"

Cry → ¥ SET

i
. we obtain a simple scaling of the Hamiltonian :

It → ¥ It

. .. the physics does not depend on any length scale

(e.g. , inter particle spacing)

- But the contact interaction is ill - defined in the quantum problem .

Once it is renominating ed
,

the classical symmetry is broken
and a length scale is introduced

.

↳ "

Quantum Anomaly
"

Liii) A two - body bound state exists for arbitrarily weak (s - wave )
attraction in 2 D

( Landaut Lifshitz )
→ introduces length scale ( size Of bound state )



⑤

- Consider two distinguishable particles in centre - of - mass frame
.

Relative wavefunction 4G) satisfies :

v = interaction
- 174
+

v

(f)
4 ( r ) = EX Cr) ;

I
Mr  = reduced mass

2 Mr I
,

E  
= energy

Transform to momentum space :

Hr ) =

IsEnricg) eiger; y ( r ) =⇐ yuck,eikir
N

Liar4TH
t I

E. rite - WITCH = EXCH

Now define y Ck) = - Iz §,

The - w ) UTCw )

and consider bound states where E  = - EB LO .

i . we have "

que , = -1 if ( k )
642 Mr  t EB

ie .

,

Hk
) = - ¥4 , ridden Cki ) C* )

W4am rt EB

New consider regime where particles are nearly unbound :

Ers → 0
,

tick ) → Su
,

o

i
. y Ck) → - fair ( k )

i
. EI becomes : rich = - tea,

wyim.IE# The ')



⑤

Now divide sum into small k and large k :

rich I te I ri Cul EG ) E 1-
WL ko W42M r  t EB

+ Ese
.

The

-67967IKE )

where ko is typical range over which T ( k ) varies
.

.

"

. we have :

rich I me Tahir ( o ) he
g ( Ers ) t

-
-

.

21T

New log (Ers ) → - a as EB → 0
,

so first term

dominates and we have :

rich ) =MITCHTG ) log (EB)
21T

Ee . Livio = log (Eos )

.

"

. Ers → O only when I ( o ) -70

Thus
,

there is always a bound state when To (o ) L O
.

→ Argument applies to general interaction

• One : what happens in 3D ?



⑥

• Renormalization of

short
-

range ( contact )

interactions

→ Vcr) -

- goer)

- Equation for bound state with binding energy Ers :

Limit

tht
s g. 4Th = - Ers This
I

- I = I - 1- } w divergent↳
-g FuWknr + EB

By imposing a cut-off
"

by hand
'

,

'

we obtain :

A

- I = ÷ folk -4 =

2M¥ hog (n%mre,tEB)g (N o u 42  Mr  t Ers

↳ allows us to write bare parameter g (a) in terms

of physical parameter , EB
.

•

Alternativelyone could use the lattice model

( see Werner 's lectures and 1103 . 2851 )

• ⑨ @  @ •

•  • • •  •

}b
@ a • a  a

on

b

- In this case
,

momenta are restricted to the 2 D Brillouin gone :

hi E IT
and the interaction is now defined on one lattice site

.



For a nice discussion of the Lippmann-Schwinger 
equation, see:

http://www.thp.uni-koeln.de/alexal/pdf/advqm.pdf

⑦

• Scattering with a short-range potential
- Two - body scattering problem in c. o . m

. frame :

( Iott ) 147 = E 147
kinetic J ← 2 - body interaction
energy

General solution (Lippmann - Schwinger) : un scattered wave

I I 14.7 = E 140 )
147 = (E -

Foti
o)

- ' I 14 ) t Ho )
-

Green 's function E-

of
Eti 0 )

Define T matrix :

gyy = (, +II) No )

Now 147 = II147 t 14.7 ,
i.  e.

,
147 = G -EIT '

I Yo )

i . It

EI
= f-

EI
)

'

⇒

Got
- E. i .  - Got EE = o

.

.

.
I = it i Eo

i
↳ L left Iki ) is proportional to the scattering amplitude

[ see Walraven 's lectures )
For the case of contact interactions

,
we have :

A

( htt 'T Et id I hi ) =

g t

gIe§L9le¥#
Iq ) t - - .

= (Ig - IT (E)T
'

n r

where IT (E) =L Earth ←ii 19h =L Eq 1-
L2 E E - 942 Mr t ice



⑧

Using the expression for g (a) ,
we finally obtain (in the limit A → a ) :

TLE ) = ( left ICE  tie ) I ki ) = at 1-
Mr log(EB I E) t i IT

* Notable features :

- There is always a pole ,
E  = - EB

,

i.
e.

 ,
a bound state

- The scattering goes to genewhen E  → o ( unlike in 3D )
- Non - monotonic function of energy with maximum

in Reft( E )) at E  =EB
f Eef : 1408.2737 )

* Scattering amplitude :

f- ( k ) = 2 Mr T ( k 4am , ) he = relative

momentum
4T

= #

log (2mrEB/k2) + it

i.  e.
, f(b) =

, EB = 2m!aIlog ( Ykaz , ) t ith

- LD scattering length Az , > o ( one convention )

- Logarithmic dependence on length scale Aap

i . weak violation of classical scale invariance

→

auantumanomaly
( see

,
e. g. ,

01 Shani i etat
,

1006 . 1072 )



⑨

HLM-
• BCS-Bsover in2B IRef.

: 1402 . 5171 ]

Consider two - component (T
,

I ) Fermi gas in uniform space
- equal masses ( me = min = m )
- equal spin populations ( n in  = he =

Mz
; Mr

-

- Mu The )
- attractive contact interactions (s wave )

. Hamiltonian :

A - MN = Ito - MA + tint

where it
.

- pin = §,

(Eu -

m ) Ctu
, Custint = 9- §w

,
qctutqhttthtqztc-hkg.dz tch 't geht

r

← system volume / area

to ion .
.

-
-

,

⑨•too
'

I r i r !ee.I
.

ii,d to' @••@/ hT u
- B

•

I â

I •
- • ' '

i
@ co

•⑥
• -  ' '

.

Qi
- >

BCS BEC

In 3D
,

the BCS regime is when as to i.  e
. tobound

state
' '

[Chevy lect
. ]

How do me achieve acrossoverin 2 D
,

where there is always
a bound state ?

→ By varying the ratio EB I Ee : EB / Eek I
,

BCS

EB I EF 77 I
,

BEC

→ can have a density - driven crossover
-



④

cis Variational wavefunction approach

- Take boson operator btg = §
'

he Ctu
+ q , , ,

Eth
+ get

- Coherent state :

147 = N et bto
toy = N et Edu etatEtat

to ,
← normalization

. .. 14 ) = II ( un + Vu Ctu Eth
t ) 107

where Value = 14h ,
N = II Uu

,UE
= I

↳ whyreal ?

↳ BCS wave function is smoothly connected to
coherent state of bosons ( BEC )

Notethat full Ctu duo 147 = Vii → momentum distribution

At : how does voi look in Bec limit ?

for each spin

ri a
I -

-
su

Increasing density :

Vai a

f
- - -

- - - - - - - - - .

paining in momentum space

- 7k



④

- Free energy :

F-  = C41 fit -

µ D) 147 = 2 I (Eu -

u ) VE + I fu,

Vu Uuvuiua ,

r

+ of &,

virtu

-

g n
2

→ O as g → o and A → a

- Minimize F w . r
. t

. Uu
,

Vu at fixed µ
:

↳ with constraint UE t Vai = I → Vie = sink
,

Uu = cos Qe

& ) 2 ( Eh
-

M ) Uu Vu t (uh - Vii ) and E Uw Vu ,
= O

k '

In the limit Vu → O
,

we recover the 2- body equation :

2 Eu Vw t and
Evie

, I 2M Vu
,

.

"

. 2M I - EB
Kl

DefiningD=-In { uuvu
, fu = Eu -

M , Eq . Ct ) then gives :

YET
=

D-
= at sing

2 fu cos 20

↳ sense  

=r÷g → Uuvu = #
2 Jesuit D2

cos 20 = UE - out = #
g

Vegeta
.

.

.
D = - I

§2jgµ+D#



④

Likewise we can solve for

of
in terms of A and 5k

thus we end up with the equations ,

H
- It=L { arguing

"

Gap eqh
"

②

no
= IT { ( I - ⇒ Density/ number eq

'
n

2YesIt D2

* Note that A gives a measure of fermion pairing ,
since it

is easy to show that : D= In { EaterEtui )

-Replace g A ) using T matrix

• For 2 D
,

me replace with EB :

GL
= T - ' ( - Ers) t tf - Ers)

=

ie . gt = IT C- EB ) ( same as before)

. For 3D
,

me instead have :

f- = T -  '

( o ) t IT(o )
-

m

Ita s ←

3D
scattering length

-

Solving
(1) and G ) in 2 D gives :

-

D= I 2E FEB

M
= EF - Espn

I with EF =akm =

Litem
)



④

- In the Bcs limit
, µ = EF ;while in the BEC limit µ →  - EB 12

(high density) ( how density )

Qe : what are the dimer - dimer interactions in the BEC limit ?

↳ Dinner chemical potential µ d = 2Mt EB I 9 doe
nd

."
. since we have Md

= Ee and nd =

no
,

we get.

.

|gdd=tIM
→ classically scale invariant

;m
-

theory misses quantum anomaly!

Cis Alternative derivation - mean - field approach

- Assume fermion paining dominates
,

such that we can

describe it using the mean field :

D= - Safe (Ctu
, Iud ( like previously )

Write operators as :

- I § ctutqzpcthtq
, at

= I 8
go

t 8Iqr

where 8D

of
- A Sq

,
o

-EffCthtqlztcthtqlzlu
↳ assumed

smell



④

- New expand Aint up to

linear
order in SI :

itint  = I ,§w
,
qctutqht Eth

t got
C- high tch 't gut

r

=

age § I Sq
,

.
t

said
'

= Ig II t Esq . (

SdfSEE
)

= -

Ig
E - A & Ctu Eat - A § Eat Car

.

'

. we have mean - field Hamiltonian :

it
me

= -

ng
At t § CEu -

u ) ctuocuo - A featurette - A § Get Car

= - IgE + E It feignIf e.) Iou t

Elena
)

where I It = ( other
,

Ewe )

Diagonalize Hamiltonian using transformation :

HE:D -

- ( un -

i:)
exercise is

Vu

ie .

it
me

= - F E t § ( Eu -MI t & ( Eu 8th 8kt - Eu 8*8 ⇒
=

-

GEE it { (Eu -

µ
- Eu ) + § Eu (setup 8

up
+ statue)

c-
where En = Ves It AZ



⑤

Lowest energy corresponds to 48thou
. ) = o

.

.

.

Her create quasiparticle excitations ( unpaired )

t ha : what is the ground state wave function ?

Has) a ITU 8kt 8ha 107 since this

guarantees8kg Klas ) -

- o

T
vacuum state for original operators

= throw ( un t Vu Ctu Eat) 107

in

formalized
) ground state is the Bcs wavefunction :

,
Hast = Tulun t Vu Ctu Iud) 107 v

* Gap equation corresponds to offsH'
me ) = 0 ⇒minimizes energy

→ Quasiparticle excitation energy : Eu =V(Ewm5-IT
M > O µL o

E a E a

¥¥su
-

YEsu
→

Qualitativechange in excitation spectrum @ µ
-

- 0

i
. µ= O marks

"

crossover point
" between Bcs and BEC

Within 2 D MET
, µ

-
- 0 → EF  =EB 12 → log (k FA ↳ ) = O



④
# L

.

3

* Limitations of mean - field theory

- Dimer - dimer interaction is classically scale invariant

↳ no quantum anomaly

- No normal state interactions
.

e

.
misses behaviour at

weak attraction :

M
= EF -wEg÷ t - - .

,
he

of (he azo ) ⇒ 1

-

METhas condensed pairs

fire
,A I O) at finite T

.

• png¥temperilune

- We have already seen that bosons do not condense
at finite

- T in LD (for infinite system)
Similarly , one can also  show thatAt 0 only when T 

= O

- However
,

interacting
system is superfluid for temperatures

-
-

below a critical temperature Te

↳ Associated with "quasicondensation
"

:¥gM€##The

condensation in local no phase coherence between

finite - sized regions regions .

'

. no global
condensation



④

- In BEC regime ,
To is determined by interactions between dimers

( boson - boson interactions )
⇒ BKT transition

-

[Bene zinskii, kosterlitz ,
Thanks s

,
1970 's )

- In BCS limit
,

Tc is set by energy required to break pairs
'

→ smallest energy scale

a-

- For Bcs case
,

we can estimate Te using Bcs mean - field theory.

since this capturespair breaking at finite T
.

[ Also
, system is close to being condensed )

. Mean - field grand potential ( for fixed T
, µ ,

r ) :

to me
= -

Lp log ( Tr I e- B

#
me I)

= -

Eg
E 't { (Eu -

a
- Eu ) -

I Eu hog ( I + e- PET

-

OI non - interacting gas
of quasi particles

"
"

→ minimum at men - zero A

OI
I SF phase)

T 7 Tc

# a
→ minimum at A = 0

[ Normal phase )



④

- Expand OI close to D=o :

OI me
= I t

of A
"

t
. . . [ Eu : why even powers? ]

Transition corresponds to A = 0 ⇒

¥⑤F
! , ⇒

= O

i. we have "

.

q
- q atdi - HEINE!

ie .

-

F = E aight-

Femenil
= En 2£ ( I - ⇐pgu) ( check this )

In the limit EB K Ee
,

this yields :

To = e¥f2EFEB 8 I O . 5772 . . .

- ( Enter 's constant )
zero T pairing gap

T
ke

-
-

-
-

=OH
-

y
To - -

-
- a

BEEIKIO

>

kg (KFA as)
- Dinners become men - interacting as log Chea ↳ ) → -

a.e

. Tc → O ( not captured by MFT )
- Maximum Tc around hog Chef azo ) I 0

.



④

•
"Pseudogap

"

region ?

- Just above To we have :

In Bose liquid when EB / Ep 771
, hog (k Fazio ) → - A

(2) Fermi liquid when EB I EF K I
, log ( ke azo) → too

→ wh#ppension ?

- The term "

pseudogap
"

comes from the gap
- like feature

observed in density of States of high - temperature
superconductors abode Te

- Basic question is whether such a pseudogap can be produced
by fermion pairing without superconductivity I superficiality

↳ Test with 2 D Fermi gas ,
but to reproducephenomenology

we require a Feminizeas well as preformed pairs ⇒ ④

T f

possible
pseudogap region

Bose liquid
hee

-
O . I

-

-
-

- - ::*::aim . .FEI
I

1B④
I s

O a .  5 kg (KF Az D)

I 705 . I 0577→Experimentalevidence for such pairing above Te :
-

- Rem question : does paining above Te necessarily give
a pseudogap in the density of states ?
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• Equation of state above To

- For The → a
,

we have pre → - a

FE
. g. , for men - interacting Fermi gas :

nu =
1-

f→
e- Bleu -

re )

I t e B C Eu -

m )

- recover classical Boltzmann gas at high T I

.

e

. in high T limit
,

2-
= EBM K I

,
so we can treat

thefugacity zperturb atively

- Grand potential OI 
= -

t log Zwhere
partition function

I
= Trf e- BCA AND

Since it conserves no
.

 of particles, we can rewrite this as :

z  = § ERM N
Tr, [ e-Pit ) E § 2N Bn

- -

2N trace over States

in N - body cluster

.

'

-
we have expansion in fugacity ,

i.  e.
,

the :

Z  = I t 2B
, + 22 B

z
t 23 B

z
t . . .

⇒Be2 § e- BE "
= 2 ifJoke e-PE

=

2¥
=

2,41T2
types offermions .

-

I
.

d = 12117mF



④

i
. we have to = -

pt tog f I t § 2N BN)
7 I

= -

Ip ( §
'

z
N B N

- I ( § z

"
BN)

'

t I (En 2
N B n )7 . . . ]

I I  71 7 I

= - tf B , 2 t ( B
z

-

Lz Bf ) 22 t ( B
3

- B
, BzttzBP) 23 t . .

. )
- Remarkably ,

all terms scaleasL2 (higher powers of area cancel )
.

'

. the convention is to write it as :

OI = -

Lp B
, lb , 2 t b

z22t b3.23t . . . ]

where bjare the ( dimensionless ) virialcoeff-i.int .

→ Leading order term ( with b
,

= I) is an idealclassical gas
→ Interactions t statistics only enter at order 22

• Total density :

n = At the = - I goin It
,

,

=

Zzz § ,
j bj 2J

Non - interacting Fermi gas : tbf"jtz, I
a

-
-

I
"

( exercise ! )
- Contribution from interactions : Abe b

z
- bi "

A.
ban

Are : why is Ab
,

> o ?#
log (and a)

O
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- Density profile in trap ⇒ equation of state

Local density approx .

.

. µ Cr) =

Mo
- V ( r )

; r
'

=  x 't yz

i
. by locally measuring density ,

we obtain n fu ) at fixed T
,

Ers

. 2 D Fermi
gas Eos ( T >To ) :

An
/ no

interactions /
" 'B

increase

\
log (ke azo) increases

→ I -

✓
→ PM

high T
,

classical O how T
, quantum

→ no is density of non - interacting Fermi gas
at same pm

⇒

Non
- monotonic behaviour unlike 3D unitary FG

I
-

0

- Crossover from classical to quantum ⇒ quantum anomaly

-

Recently observed in experiments ( Swinburne
, Heidelberg )

[ see my Viewpoint, Physics 9
,

10 ( 2016 ))



④
ELI

• the quasi - 3D system ( Eef : 1408 . 2737 )

- In reality ,
we live in a 3D world

,
so we must confine fermions

to 213 plane using trapping potential Vt ft )

Iet Limit of deep potential : VL ft ) I Im WEE
- I
-

¥.
- 2 D regime : EE ,

T K W I -7
z

OR Ykf ,
A77 Lz

,
where Iz  =✓mz ,

A =

j2MT

- What about interactions ?

→Real short-range interactions are 3D .

→ heads to scattering into higher harmonic levels
.

- Consider two - body problem (equal masses )
y

3D position

€!- shik+ Vt Hi ) ) ICE
, E) t g

, Eri - E) IT EI ri ) = e et

Now harmonic potential is separable into relative t C
. o

.
M

.

coordinates ( if frequencies are the same ) :

Vitti ) t Vt Az) = tzmrwz E + Iz M WE Zm2

.
"

- we can

just
consider eqln in c. o

.
m . frame .

.@ " F '

M ⇒ m)

f-Emile
'

- taketmrw :*gz.FI/4CeT4--E4Ce7zI,

r 2 Mr

where f
'

= ( x
, y )



④

Non - interacting eigenstates: II. ng = e
' ton G)

-

Ee .

non - interacting Hamiltonian :

Ho
. eigenstates

Ito -

-

Sqn
Ihem

.

+ Cnt Yz) wz ) tin > aint

and interacting part ( area set to 1) :

it int
= E ( kind Is,

Ileana ) Mini ) C kind
K

, hi
#

km I.
contact interactions g

,

§
Cr)

93¥19
dad "

[ can also  include finite range )
Consider two - body bound state :

1427 = fun He ,
n ) Ik ,

n >

Now we have :

ftot H' int ) 147= E147

i. projecting onto tiny gives :

father-1 ( nth ) wz ) n (kin ) tgdnloluqn.lu , 61716in 'I -

- Eyck,
n )

3D

¥f

93.0nA
) fit .

, YUM ) =

E-u4zmr#tY)WZ



④
93 is

NG
) Pf

it
. f  = Em

L-hyzmr-lntyzlwz.si
we finally get :

t

long
, 12 HI

. even n only

Is
.

= En

uyzmrtcntyzswzte

I using9!!
But IT

,

=

anti
 -

Ed
, tear 3D momentum

in

T
- '

( o )
without potential

3D

.

'

. cannot neglect sum over n  → cancels UV divergence

After some clever manipulations,
one obtains :

le = FfElwzt 1/2 )
As

-  xu

where FCK) = Edu vain It - Valeriya )
For KIKI :

F-Gc) I

vtzfog
Gtx1B ) t

tooth
x t - - -

,
B I O . 905

V 21T

⇒ Always a solution for any 3D scattering length as

Ee
.

there is always a bound state in quasi - 2 D
, even

when there are none in 3D
.

the-

.
how is this possible ?)



④

Keeping lowest order GD ) term in

FG
)

,
we have binding energy :

EB
= - E  t I w z I wy exp ( VIT ez1a s )

→ corresponds to limit tzfa ,
K - I

.

- Two - body energy across interaction range :

El w z
^

Yz - - -

- - - - .  - - - - - - - - - - .

=-3

Has

ut
2 D limit as

M

-

I

i ⑨ f
-Thequasi - 2 D T matrix is :

I CE ) = VII I ¥ - Ff - EIwet Ya) ]
"

⇒ when I - Elwz t Yz I K I
,

we recover 2 D expression :

I (E) I IT ftogfzmraioe) + it )
where

Aziz = ht JIT exp f VIII lazy) Petrov + S
,

2001



④

•

Paice
:

- We require la I as a - I for bound state to be 2 D
,

with EB

Izmir
- AID

- We require collision energy ⇐ E - I wz K I to have 2D

seemingStates
↳ ndeametvisEB !

- When I as I K l z
,

there is a large range of energies such that :eyes= h Iz
→ in

newfoundintake?nirari
once !

1-1

OUTLOOK
-

:

- what interesting physics lies in the crossover between
2 D And 3D ?

e. g. ,
is Tc for superfluid

'

try maximal in between ?


