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Principle of optical lattices

Standing waves along 1, 2 or 3 axes, with different frequencies.

2 standing
waves:
2D lattice of
tubes

3 standing
waves:
3D lattice

I. Bloch, Nat.

Phys. (2005)
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Band structure

V0 = 0
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Comparison with free particle
(left) of harmonic approximation
(right)
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Band structure

V0 = Erec
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gray zone: potential depth V0

V0 = Erec

��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

�����-�������� � [�]

�
��
�
��
��
�
�
�
�
[�
��
�]

zoom around q = 1: gap opening
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Band structure

V0 = 2Erec
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Band structure

V0 = 4Erec
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V0 = 4Erec
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Band structure

V0 = 8Erec
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V0 = 8Erec
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Band structure

V0 = 16Erec
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V0 = 16Erec
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Band structure

V0 = 25Erec
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Band structure

V0 = 32Erec
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Bloch functions

Bloch functions resemble plane waves at low V0, and series of
peaks at large V0.

lowest band
V0 =

0 . . . 32Erec
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Bloch functions

Bloch functions resemble plane waves at low V0, and series of
peaks at large V0.

first excited
band
V0 =

0 . . . 32Erec
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Momentum comb: sudden release

Sudden release of the optical lattice: the momentum distribution
presents a periodicity 2~k .

Expansion with time

3.3 BEC in an optical lattice potential

time of flight
2 ms 6 ms 10 ms 14 ms 18 ms

Figure 3.12: Time of flight absorption images of multiple matter wave interference pattern
for different expansion times. Coherent BECs from 100 000 lattice sites expand, overlap and
interfere with each other. Narrow momentum peaks are observed, demonstrating the long
range phase coherence across the lattice

Figure 3.13: Schematical picture of the three-dimensional momentum distribution corre-
sponding to a 3D lattice, together with measured time of flight images. These images show
the projection in the direction of one lattice axis. Therefore different momentum peaks in
this direction overlap and are not distinguishable. However, images taken from different
sides show that the momentum distribution has a three-dimensional structure.

43

Interference between the wells

bosons in a 3D lattice

3.3 BEC in an optical lattice potential

time of flight
2 ms 6 ms 10 ms 14 ms 18 ms

Figure 3.12: Time of flight absorption images of multiple matter wave interference pattern
for different expansion times. Coherent BECs from 100 000 lattice sites expand, overlap and
interfere with each other. Narrow momentum peaks are observed, demonstrating the long
range phase coherence across the lattice

Figure 3.13: Schematical picture of the three-dimensional momentum distribution corre-
sponding to a 3D lattice, together with measured time of flight images. These images show
the projection in the direction of one lattice axis. Therefore different momentum peaks in
this direction overlap and are not distinguishable. However, images taken from different
sides show that the momentum distribution has a three-dimensional structure.

43

Observation along two orthogonal
axes ⇒ recover the 3D distribution

From Markus Greiner’s PhD thesis.
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Band mapping: adiabatic release

Example: population in 2 bands

V0 = 4Erec
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FIG. 6 (color). (a) Reciprocal lattice and Brillouin zones for
the two-dimensional Bravais lattice of Fig. 4(a). (b) False color
image of the experimentally measured band population of a
dephased Bose-Einstein condensate in a 12Er deep optical lattice
where phase coherence between neighboring lattice sites has
been lost.
scattering, the measurement of the interference pattern is
less suitable to quantitatively analyze the coherent fraction
of atoms in the lattice.

The dephasing of the condensate wave function in the
optical lattice becomes clearly visible when we introduce
an external perturbation by switching off the magnetic
trapping field and thereby exposing the atoms to the linear
gravitational potential. For a 12Er deep optical lattice and
2 ms after switching off the magnetic field we can no longer
observe an interference pattern in the density distribution
of the released atoms. This indicates that phase coherence
of the atoms across the lattice has been lost. To experimen-
tally determine which energy bands are populated by the
dephased Bose-Einstein condensate, we ramp down the op-
tical potential in 2 ms, after the 2 ms hold time in the pure
optical potential. This ramp speed ensures that we are adi-
abatic with respect to the atomic motion in a single lattice
site and preserve the band population. The momentum
distribution of the atomic cloud is obtained by imaging the
atoms after 12 ms of ballistic expansion. Atoms originat-
ing from the lowest energy band are then expected to ob-
tain momenta that lie within the first Brillouin zone of the
lattice [17]. The Brillouin zones of a two-dimensional Bra-
vais lattice are displayed in Fig. 6(a). The experimentally
measured momentum distribution shown in Fig. 6(b) ex-
hibits a pronounced squarelike momentum distribution of
width 2h̄k coinciding with the first Brillouin zone of the
Bravais lattices. This proves that the atoms from the de-
phased condensate populate only the lowest energy band of
the lattice and remain in the radial ground state of a single
lattice tube even if the phase coherence between neighbor-
ing lattice sites has vanished.

Employing the same method we have measured the band
population in the combined potential of the magnetic trap
and the optical lattice. For a 12Er deep lattice and after
a storage time of 1 s we find that 60% of the initial num-
ber of atoms are still present and that all of these atoms
remain confined to the first energy band. For the same pa-
rameters no significant condensate fraction was measured
(see Fig. 5). So far, we cannot identify whether axial ex-
citations are present in a single lattice tube.

In conclusion, we have created an experimental system
which now enables us to study the physics of ultracold 1D
quantum gases (see also [18]). A variety of fundamental
questions of the physics in reduced dimensions can now
be addressed in the experiment. The correlation properties
of 1D quantum gases are intrinsically different from those
encountered in 3D. It is expected that in a 1D gas the de-
crease of temperature leads to a continuous transformation
of the correlation properties from the ideal gas case to the
regime which is dominated by quantum statistics and in-
teractions [4]. In the extreme limit of low atomic densities
or large interactions even the character of the bosonic par-
ticles changes and the gas acquires Fermi properties [1–5].

By adding a further standing wave laser field we can
extend the geometry of the lattice to three dimensions.
This should pave the way towards the observation of a
quantum phase transition in a dilute gas of atoms from
a superfluid to a Mott insulator phase [19]. We believe
that straightforward modification of our experiment should
allow us to reach this regime.

We thank Wilhelm Zwerger and Martin Holthaus for
stimulating discussions and Anton Scheich for experi-
mental assistance during the construction of the experi-
ment. We also acknowledge support by the Deutsche
Forschungsgemeinschaft.

*Also at Department of Physics, University of Florence,
Italy.
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

directions.
The measurement of the band population demonstrates that it is possible to homogenously

populate the lowest energy band while having no population in higher bands. In a tight
binding picture this corresponds to a situation where in each lattice site only the vibrational
ground state is occupied by the condensate, but the phase correlation between the sites is
lost.

Populating higher energy bands

We can populate higher energy bands in the lattice by using stimulated Raman transitions,
where states in different energy bands are connected by a stimulated two-photon process
[80, 81]. In order to drive the transition we apply two Raman beams to the atoms in the lattice
(Figure 3.21b). The frequency difference δωr = δE/h̄ between the beams corresponds to
the energy difference δE between the Bloch states. The Raman beams are detuned by ∆r

with respect to an atomic transition. By changing the angle between the two beams the
momentum transfer δq of the Raman beams can be arbitrarily chosen between 0h̄kr and
2h̄kr, where kr denotes the norm of the k-vector of the Raman beams. Therefore Bloch
states in all bands and with arbitrary quasi momenta can be populated.

In a tight binding picture the Raman beams induce transitions between vibrational levels
of each potential well (see 3.21a) and the change of the quasimomentum δq corresponds to
the simultaneous change of the relative macroscopic phase between lattice sites.

(a) (b) (c)

Figure 3.21: Population of higher energy bands. (a) Higher vibrational levels on each lattice
site can be populated by stimulated Raman transitions. (b) In a Bloch picture this corre-
sponds to Raman transitions between different energy bands. (c) Measured band population
of a dephased BEC in a 2D lattice, where higher energy bands have been populated by stim-
ulated Raman transitions. Therefore population of the corresponding higher Brillouin zones
is visible.
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Köhl%et'al.,%2005%:%fermions%(40K)%dans%un%réseau%cubique%3D%

sequence of two radio-frequency pulses. By lowering the
depth of the optical trap on a time scale of 2 s we further
evaporatively cool the potassium gas. This is done at a bias
magnetic field of B ! 227 G, which is well above the
magnetic Feshbach resonance centered at B0 ! 202:1 G
[1], and the s-wave scattering length between the two
fermionic spin states is a ! 118a0 (a0 is the Bohr radius).
At the end of the evaporation we reach temperatures be-
tween T=TF ! 0:2 and 0.25 with 5" 104 to 2" 105 par-
ticles, respectively.

Prior to loading the atoms into the optical lattice we tune
the magnetic field to B ! #210$ 0:1% G, such that the
s-wave scattering length between the two states vanishes.
Then the standing wave laser field along the vertical z axis
is turned on. Subsequently, the optical dipole trap along the
y axis is turned off and a standing wave laser field along the
same axis is turned on, followed by the same procedure
along the x axis. In order to keep the loading of the atoms
into the lattice as adiabatic as possible the intensities of the
lasers are slowly increased (decreased) using exponential
ramps with time constants of 10 ms (25 ms) and durations
of 20 ms (50 ms), respectively.

In its final configuration the optical lattice is formed by
three orthogonal standing waves with mutually orthogonal
polarizations and 1=e2 radii of 50 !m (x axis) and 70 !m
(y axis and z axis), which are derived from the same lasers
as for the optical dipole trap. The laser fields of the three
beams have a linewidth of the order of 10 kHz and their
frequencies are offset with respect to each other by be-
tween 15 and 150 MHz. The resulting optical potential
depth Vx;y;z is proportional to the laser intensity and is
conveniently expressed in terms of the recoil energy Er !
!h2k2=#2m%, with k ! 2"=# and m being the atomic mass.
The lattice depth was calibrated by modulating the laser
intensity and studying the parametric heating. The calibra-
tion error is estimated to be <10%.

The potential created by the optical lattice results in a
simple cubic crystal structure and the Gaussian intensity
profiles of the lattice beams give rise to an additional
confining potential which varies with the laser intensity.
As a result, the sharp edges characterizing the T ! 0
distribution function for the quasimomentum in the homo-
geneous case [19] are expected to be rounded off. A
quantitative picture can be obtained by considering a
tight-binding Hamiltonian to describe noninteracting fer-
mions in an optical lattice with an additional harmonic
confinement [20]. At T ! 0 the inhomogeneous system
is characterized by the total atom number N and by the
characteristic length $ over which the potential shift due to
the harmonic confinement equals the tunnel coupling ma-
trix element J. One finds $% !

!!!!!!!!!!!!!!!!!!!

2J=m!2
%

p

, with the fre-
quencies of the external harmonic confinement given by
!% (% ! x; y; z). The density distribution scaled by $% and
the momentum distribution of the atoms in the lattice
depend only on the characteristic density &c ! Nd3

$x$y$z
,

where d is the lattice spacing [7]. For a three-dimensional

lattice with 20" 20" 20 sites we have numerically calcu-
lated the characteristic density for the onset of a band
insulator to be &c ’ 60. For this value of &c the occupation
number at the center of the trap is larger than 0.99. It has
been pointed out that a fermionic band insulator in an
optical lattice with confining potential constitutes a high
fidelity quantum register [21].

In the experiment we probe the population within the
first Brillouin zones by ramping down the optical lattice
slowly enough for the atoms to stay adiabatically in the
lowest band while quasimomentum is approximately con-
served [22]. We lower the lattice potential to zero over a
time scale of 1 ms. After 1 ms we switch off the homoge-
neous magnetic field and allow for a total of 9 ms of
ballistic expansion before we take an absorption image of
the expanded atom cloud. The momentum distribution
obtained from these time of flight images, shown in
Fig. 1, reproduces the quasimomentum distributions of
the atoms inside the lattice. With increasing characteristic
density the initially circular shape of the Fermi surface
develops extensions pointing towards the Bragg planes and
finally transforms into a square shape completely filling the
first Brillouin zone deeply in the band insulator. We have
observed population of higher bands if more atoms are
filled into the lattice initially. In Fig. 2 the experimental
data for momentum distributions along the line with qua-
simomentum qy ! 0 are compared to the results of nu-
merical simulations using the same characteristic densities.

When imaging the cloud along the x direction we find a
homogeneous filling of the band in the vertical (z) direc-
tion, probably due to the change in the harmonic confine-
ment while loading the lattice combined with the presence
of gravity. This asymmetry between the horizontal x, y, and
the vertical z directions vanishes when the gas approaches
the band insulating regime. We have examined the level of
adiabaticity of our loading scheme into the optical lattice
by transferring the atoms from the band insulator back into
the crossed beam dipole trap. There we find a temperature
of 0:35TF when the initial temperature prior to loading into
the lattice was 0:2TF.

We have studied the dynamic response of the noninter-
acting Fermi gas to a change in the characteristic density

a cb d

OD

0

0.04e

x

y

2 hk

FIG. 1. Observing the Fermi surface. Time of flight images
obtained after adiabatically ramping down the optical lattice.
The characteristic density increases from left to right. (a) Image
of 3500 atoms per spin state and a potential depth of the optical
lattice of 5Er. Images (b)–(e) were obtained with 15 000 atoms
per spin state. The potential depths of the optical lattices were
(b) 5Er, (c) 6Er, (d) 8Er, and (e) 12Er. The images show the
optical density (OD) integrated along the vertically oriented z
axis after 9 ms of ballistic expansion.
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FIG. 6 (color). (a) Reciprocal lattice and Brillouin zones for
the two-dimensional Bravais lattice of Fig. 4(a). (b) False color
image of the experimentally measured band population of a
dephased Bose-Einstein condensate in a 12Er deep optical lattice
where phase coherence between neighboring lattice sites has
been lost.
scattering, the measurement of the interference pattern is
less suitable to quantitatively analyze the coherent fraction
of atoms in the lattice.

The dephasing of the condensate wave function in the
optical lattice becomes clearly visible when we introduce
an external perturbation by switching off the magnetic
trapping field and thereby exposing the atoms to the linear
gravitational potential. For a 12Er deep optical lattice and
2 ms after switching off the magnetic field we can no longer
observe an interference pattern in the density distribution
of the released atoms. This indicates that phase coherence
of the atoms across the lattice has been lost. To experimen-
tally determine which energy bands are populated by the
dephased Bose-Einstein condensate, we ramp down the op-
tical potential in 2 ms, after the 2 ms hold time in the pure
optical potential. This ramp speed ensures that we are adi-
abatic with respect to the atomic motion in a single lattice
site and preserve the band population. The momentum
distribution of the atomic cloud is obtained by imaging the
atoms after 12 ms of ballistic expansion. Atoms originat-
ing from the lowest energy band are then expected to ob-
tain momenta that lie within the first Brillouin zone of the
lattice [17]. The Brillouin zones of a two-dimensional Bra-
vais lattice are displayed in Fig. 6(a). The experimentally
measured momentum distribution shown in Fig. 6(b) ex-
hibits a pronounced squarelike momentum distribution of
width 2h̄k coinciding with the first Brillouin zone of the
Bravais lattices. This proves that the atoms from the de-
phased condensate populate only the lowest energy band of
the lattice and remain in the radial ground state of a single
lattice tube even if the phase coherence between neighbor-
ing lattice sites has vanished.

Employing the same method we have measured the band
population in the combined potential of the magnetic trap
and the optical lattice. For a 12Er deep lattice and after
a storage time of 1 s we find that 60% of the initial num-
ber of atoms are still present and that all of these atoms
remain confined to the first energy band. For the same pa-
rameters no significant condensate fraction was measured
(see Fig. 5). So far, we cannot identify whether axial ex-
citations are present in a single lattice tube.

In conclusion, we have created an experimental system
which now enables us to study the physics of ultracold 1D
quantum gases (see also [18]). A variety of fundamental
questions of the physics in reduced dimensions can now
be addressed in the experiment. The correlation properties
of 1D quantum gases are intrinsically different from those
encountered in 3D. It is expected that in a 1D gas the de-
crease of temperature leads to a continuous transformation
of the correlation properties from the ideal gas case to the
regime which is dominated by quantum statistics and in-
teractions [4]. In the extreme limit of low atomic densities
or large interactions even the character of the bosonic par-
ticles changes and the gas acquires Fermi properties [1–5].

By adding a further standing wave laser field we can
extend the geometry of the lattice to three dimensions.
This should pave the way towards the observation of a
quantum phase transition in a dilute gas of atoms from
a superfluid to a Mott insulator phase [19]. We believe
that straightforward modification of our experiment should
allow us to reach this regime.

We thank Wilhelm Zwerger and Martin Holthaus for
stimulating discussions and Anton Scheich for experi-
mental assistance during the construction of the experi-
ment. We also acknowledge support by the Deutsche
Forschungsgemeinschaft.

*Also at Department of Physics, University of Florence,
Italy.
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

directions.
The measurement of the band population demonstrates that it is possible to homogenously

populate the lowest energy band while having no population in higher bands. In a tight
binding picture this corresponds to a situation where in each lattice site only the vibrational
ground state is occupied by the condensate, but the phase correlation between the sites is
lost.

Populating higher energy bands

We can populate higher energy bands in the lattice by using stimulated Raman transitions,
where states in different energy bands are connected by a stimulated two-photon process
[80, 81]. In order to drive the transition we apply two Raman beams to the atoms in the lattice
(Figure 3.21b). The frequency difference δωr = δE/h̄ between the beams corresponds to
the energy difference δE between the Bloch states. The Raman beams are detuned by ∆r

with respect to an atomic transition. By changing the angle between the two beams the
momentum transfer δq of the Raman beams can be arbitrarily chosen between 0h̄kr and
2h̄kr, where kr denotes the norm of the k-vector of the Raman beams. Therefore Bloch
states in all bands and with arbitrary quasi momenta can be populated.

In a tight binding picture the Raman beams induce transitions between vibrational levels
of each potential well (see 3.21a) and the change of the quasimomentum δq corresponds to
the simultaneous change of the relative macroscopic phase between lattice sites.

(a) (b) (c)

Figure 3.21: Population of higher energy bands. (a) Higher vibrational levels on each lattice
site can be populated by stimulated Raman transitions. (b) In a Bloch picture this corre-
sponds to Raman transitions between different energy bands. (c) Measured band population
of a dephased BEC in a 2D lattice, where higher energy bands have been populated by stim-
ulated Raman transitions. Therefore population of the corresponding higher Brillouin zones
is visible.
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sequence of two radio-frequency pulses. By lowering the
depth of the optical trap on a time scale of 2 s we further
evaporatively cool the potassium gas. This is done at a bias
magnetic field of B ! 227 G, which is well above the
magnetic Feshbach resonance centered at B0 ! 202:1 G
[1], and the s-wave scattering length between the two
fermionic spin states is a ! 118a0 (a0 is the Bohr radius).
At the end of the evaporation we reach temperatures be-
tween T=TF ! 0:2 and 0.25 with 5" 104 to 2" 105 par-
ticles, respectively.

Prior to loading the atoms into the optical lattice we tune
the magnetic field to B ! #210$ 0:1% G, such that the
s-wave scattering length between the two states vanishes.
Then the standing wave laser field along the vertical z axis
is turned on. Subsequently, the optical dipole trap along the
y axis is turned off and a standing wave laser field along the
same axis is turned on, followed by the same procedure
along the x axis. In order to keep the loading of the atoms
into the lattice as adiabatic as possible the intensities of the
lasers are slowly increased (decreased) using exponential
ramps with time constants of 10 ms (25 ms) and durations
of 20 ms (50 ms), respectively.

In its final configuration the optical lattice is formed by
three orthogonal standing waves with mutually orthogonal
polarizations and 1=e2 radii of 50 !m (x axis) and 70 !m
(y axis and z axis), which are derived from the same lasers
as for the optical dipole trap. The laser fields of the three
beams have a linewidth of the order of 10 kHz and their
frequencies are offset with respect to each other by be-
tween 15 and 150 MHz. The resulting optical potential
depth Vx;y;z is proportional to the laser intensity and is
conveniently expressed in terms of the recoil energy Er !
!h2k2=#2m%, with k ! 2"=# and m being the atomic mass.
The lattice depth was calibrated by modulating the laser
intensity and studying the parametric heating. The calibra-
tion error is estimated to be <10%.

The potential created by the optical lattice results in a
simple cubic crystal structure and the Gaussian intensity
profiles of the lattice beams give rise to an additional
confining potential which varies with the laser intensity.
As a result, the sharp edges characterizing the T ! 0
distribution function for the quasimomentum in the homo-
geneous case [19] are expected to be rounded off. A
quantitative picture can be obtained by considering a
tight-binding Hamiltonian to describe noninteracting fer-
mions in an optical lattice with an additional harmonic
confinement [20]. At T ! 0 the inhomogeneous system
is characterized by the total atom number N and by the
characteristic length $ over which the potential shift due to
the harmonic confinement equals the tunnel coupling ma-
trix element J. One finds $% !

!!!!!!!!!!!!!!!!!!!

2J=m!2
%

p

, with the fre-
quencies of the external harmonic confinement given by
!% (% ! x; y; z). The density distribution scaled by $% and
the momentum distribution of the atoms in the lattice
depend only on the characteristic density &c ! Nd3

$x$y$z
,

where d is the lattice spacing [7]. For a three-dimensional

lattice with 20" 20" 20 sites we have numerically calcu-
lated the characteristic density for the onset of a band
insulator to be &c ’ 60. For this value of &c the occupation
number at the center of the trap is larger than 0.99. It has
been pointed out that a fermionic band insulator in an
optical lattice with confining potential constitutes a high
fidelity quantum register [21].

In the experiment we probe the population within the
first Brillouin zones by ramping down the optical lattice
slowly enough for the atoms to stay adiabatically in the
lowest band while quasimomentum is approximately con-
served [22]. We lower the lattice potential to zero over a
time scale of 1 ms. After 1 ms we switch off the homoge-
neous magnetic field and allow for a total of 9 ms of
ballistic expansion before we take an absorption image of
the expanded atom cloud. The momentum distribution
obtained from these time of flight images, shown in
Fig. 1, reproduces the quasimomentum distributions of
the atoms inside the lattice. With increasing characteristic
density the initially circular shape of the Fermi surface
develops extensions pointing towards the Bragg planes and
finally transforms into a square shape completely filling the
first Brillouin zone deeply in the band insulator. We have
observed population of higher bands if more atoms are
filled into the lattice initially. In Fig. 2 the experimental
data for momentum distributions along the line with qua-
simomentum qy ! 0 are compared to the results of nu-
merical simulations using the same characteristic densities.

When imaging the cloud along the x direction we find a
homogeneous filling of the band in the vertical (z) direc-
tion, probably due to the change in the harmonic confine-
ment while loading the lattice combined with the presence
of gravity. This asymmetry between the horizontal x, y, and
the vertical z directions vanishes when the gas approaches
the band insulating regime. We have examined the level of
adiabaticity of our loading scheme into the optical lattice
by transferring the atoms from the band insulator back into
the crossed beam dipole trap. There we find a temperature
of 0:35TF when the initial temperature prior to loading into
the lattice was 0:2TF.

We have studied the dynamic response of the noninter-
acting Fermi gas to a change in the characteristic density
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FIG. 1. Observing the Fermi surface. Time of flight images
obtained after adiabatically ramping down the optical lattice.
The characteristic density increases from left to right. (a) Image
of 3500 atoms per spin state and a potential depth of the optical
lattice of 5Er. Images (b)–(e) were obtained with 15 000 atoms
per spin state. The potential depths of the optical lattices were
(b) 5Er, (c) 6Er, (d) 8Er, and (e) 12Er. The images show the
optical density (OD) integrated along the vertically oriented z
axis after 9 ms of ballistic expansion.
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FIG. 6 (color). (a) Reciprocal lattice and Brillouin zones for
the two-dimensional Bravais lattice of Fig. 4(a). (b) False color
image of the experimentally measured band population of a
dephased Bose-Einstein condensate in a 12Er deep optical lattice
where phase coherence between neighboring lattice sites has
been lost.
scattering, the measurement of the interference pattern is
less suitable to quantitatively analyze the coherent fraction
of atoms in the lattice.

The dephasing of the condensate wave function in the
optical lattice becomes clearly visible when we introduce
an external perturbation by switching off the magnetic
trapping field and thereby exposing the atoms to the linear
gravitational potential. For a 12Er deep optical lattice and
2 ms after switching off the magnetic field we can no longer
observe an interference pattern in the density distribution
of the released atoms. This indicates that phase coherence
of the atoms across the lattice has been lost. To experimen-
tally determine which energy bands are populated by the
dephased Bose-Einstein condensate, we ramp down the op-
tical potential in 2 ms, after the 2 ms hold time in the pure
optical potential. This ramp speed ensures that we are adi-
abatic with respect to the atomic motion in a single lattice
site and preserve the band population. The momentum
distribution of the atomic cloud is obtained by imaging the
atoms after 12 ms of ballistic expansion. Atoms originat-
ing from the lowest energy band are then expected to ob-
tain momenta that lie within the first Brillouin zone of the
lattice [17]. The Brillouin zones of a two-dimensional Bra-
vais lattice are displayed in Fig. 6(a). The experimentally
measured momentum distribution shown in Fig. 6(b) ex-
hibits a pronounced squarelike momentum distribution of
width 2h̄k coinciding with the first Brillouin zone of the
Bravais lattices. This proves that the atoms from the de-
phased condensate populate only the lowest energy band of
the lattice and remain in the radial ground state of a single
lattice tube even if the phase coherence between neighbor-
ing lattice sites has vanished.

Employing the same method we have measured the band
population in the combined potential of the magnetic trap
and the optical lattice. For a 12Er deep lattice and after
a storage time of 1 s we find that 60% of the initial num-
ber of atoms are still present and that all of these atoms
remain confined to the first energy band. For the same pa-
rameters no significant condensate fraction was measured
(see Fig. 5). So far, we cannot identify whether axial ex-
citations are present in a single lattice tube.

In conclusion, we have created an experimental system
which now enables us to study the physics of ultracold 1D
quantum gases (see also [18]). A variety of fundamental
questions of the physics in reduced dimensions can now
be addressed in the experiment. The correlation properties
of 1D quantum gases are intrinsically different from those
encountered in 3D. It is expected that in a 1D gas the de-
crease of temperature leads to a continuous transformation
of the correlation properties from the ideal gas case to the
regime which is dominated by quantum statistics and in-
teractions [4]. In the extreme limit of low atomic densities
or large interactions even the character of the bosonic par-
ticles changes and the gas acquires Fermi properties [1–5].

By adding a further standing wave laser field we can
extend the geometry of the lattice to three dimensions.
This should pave the way towards the observation of a
quantum phase transition in a dilute gas of atoms from
a superfluid to a Mott insulator phase [19]. We believe
that straightforward modification of our experiment should
allow us to reach this regime.
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stimulating discussions and Anton Scheich for experi-
mental assistance during the construction of the experi-
ment. We also acknowledge support by the Deutsche
Forschungsgemeinschaft.
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

directions.
The measurement of the band population demonstrates that it is possible to homogenously

populate the lowest energy band while having no population in higher bands. In a tight
binding picture this corresponds to a situation where in each lattice site only the vibrational
ground state is occupied by the condensate, but the phase correlation between the sites is
lost.

Populating higher energy bands

We can populate higher energy bands in the lattice by using stimulated Raman transitions,
where states in different energy bands are connected by a stimulated two-photon process
[80, 81]. In order to drive the transition we apply two Raman beams to the atoms in the lattice
(Figure 3.21b). The frequency difference δωr = δE/h̄ between the beams corresponds to
the energy difference δE between the Bloch states. The Raman beams are detuned by ∆r

with respect to an atomic transition. By changing the angle between the two beams the
momentum transfer δq of the Raman beams can be arbitrarily chosen between 0h̄kr and
2h̄kr, where kr denotes the norm of the k-vector of the Raman beams. Therefore Bloch
states in all bands and with arbitrary quasi momenta can be populated.

In a tight binding picture the Raman beams induce transitions between vibrational levels
of each potential well (see 3.21a) and the change of the quasimomentum δq corresponds to
the simultaneous change of the relative macroscopic phase between lattice sites.

(a) (b) (c)

Figure 3.21: Population of higher energy bands. (a) Higher vibrational levels on each lattice
site can be populated by stimulated Raman transitions. (b) In a Bloch picture this corre-
sponds to Raman transitions between different energy bands. (c) Measured band population
of a dephased BEC in a 2D lattice, where higher energy bands have been populated by stim-
ulated Raman transitions. Therefore population of the corresponding higher Brillouin zones
is visible.
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sequence of two radio-frequency pulses. By lowering the
depth of the optical trap on a time scale of 2 s we further
evaporatively cool the potassium gas. This is done at a bias
magnetic field of B ! 227 G, which is well above the
magnetic Feshbach resonance centered at B0 ! 202:1 G
[1], and the s-wave scattering length between the two
fermionic spin states is a ! 118a0 (a0 is the Bohr radius).
At the end of the evaporation we reach temperatures be-
tween T=TF ! 0:2 and 0.25 with 5" 104 to 2" 105 par-
ticles, respectively.

Prior to loading the atoms into the optical lattice we tune
the magnetic field to B ! #210$ 0:1% G, such that the
s-wave scattering length between the two states vanishes.
Then the standing wave laser field along the vertical z axis
is turned on. Subsequently, the optical dipole trap along the
y axis is turned off and a standing wave laser field along the
same axis is turned on, followed by the same procedure
along the x axis. In order to keep the loading of the atoms
into the lattice as adiabatic as possible the intensities of the
lasers are slowly increased (decreased) using exponential
ramps with time constants of 10 ms (25 ms) and durations
of 20 ms (50 ms), respectively.

In its final configuration the optical lattice is formed by
three orthogonal standing waves with mutually orthogonal
polarizations and 1=e2 radii of 50 !m (x axis) and 70 !m
(y axis and z axis), which are derived from the same lasers
as for the optical dipole trap. The laser fields of the three
beams have a linewidth of the order of 10 kHz and their
frequencies are offset with respect to each other by be-
tween 15 and 150 MHz. The resulting optical potential
depth Vx;y;z is proportional to the laser intensity and is
conveniently expressed in terms of the recoil energy Er !
!h2k2=#2m%, with k ! 2"=# and m being the atomic mass.
The lattice depth was calibrated by modulating the laser
intensity and studying the parametric heating. The calibra-
tion error is estimated to be <10%.

The potential created by the optical lattice results in a
simple cubic crystal structure and the Gaussian intensity
profiles of the lattice beams give rise to an additional
confining potential which varies with the laser intensity.
As a result, the sharp edges characterizing the T ! 0
distribution function for the quasimomentum in the homo-
geneous case [19] are expected to be rounded off. A
quantitative picture can be obtained by considering a
tight-binding Hamiltonian to describe noninteracting fer-
mions in an optical lattice with an additional harmonic
confinement [20]. At T ! 0 the inhomogeneous system
is characterized by the total atom number N and by the
characteristic length $ over which the potential shift due to
the harmonic confinement equals the tunnel coupling ma-
trix element J. One finds $% !

!!!!!!!!!!!!!!!!!!!

2J=m!2
%

p

, with the fre-
quencies of the external harmonic confinement given by
!% (% ! x; y; z). The density distribution scaled by $% and
the momentum distribution of the atoms in the lattice
depend only on the characteristic density &c ! Nd3

$x$y$z
,

where d is the lattice spacing [7]. For a three-dimensional

lattice with 20" 20" 20 sites we have numerically calcu-
lated the characteristic density for the onset of a band
insulator to be &c ’ 60. For this value of &c the occupation
number at the center of the trap is larger than 0.99. It has
been pointed out that a fermionic band insulator in an
optical lattice with confining potential constitutes a high
fidelity quantum register [21].

In the experiment we probe the population within the
first Brillouin zones by ramping down the optical lattice
slowly enough for the atoms to stay adiabatically in the
lowest band while quasimomentum is approximately con-
served [22]. We lower the lattice potential to zero over a
time scale of 1 ms. After 1 ms we switch off the homoge-
neous magnetic field and allow for a total of 9 ms of
ballistic expansion before we take an absorption image of
the expanded atom cloud. The momentum distribution
obtained from these time of flight images, shown in
Fig. 1, reproduces the quasimomentum distributions of
the atoms inside the lattice. With increasing characteristic
density the initially circular shape of the Fermi surface
develops extensions pointing towards the Bragg planes and
finally transforms into a square shape completely filling the
first Brillouin zone deeply in the band insulator. We have
observed population of higher bands if more atoms are
filled into the lattice initially. In Fig. 2 the experimental
data for momentum distributions along the line with qua-
simomentum qy ! 0 are compared to the results of nu-
merical simulations using the same characteristic densities.

When imaging the cloud along the x direction we find a
homogeneous filling of the band in the vertical (z) direc-
tion, probably due to the change in the harmonic confine-
ment while loading the lattice combined with the presence
of gravity. This asymmetry between the horizontal x, y, and
the vertical z directions vanishes when the gas approaches
the band insulating regime. We have examined the level of
adiabaticity of our loading scheme into the optical lattice
by transferring the atoms from the band insulator back into
the crossed beam dipole trap. There we find a temperature
of 0:35TF when the initial temperature prior to loading into
the lattice was 0:2TF.

We have studied the dynamic response of the noninter-
acting Fermi gas to a change in the characteristic density
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FIG. 1. Observing the Fermi surface. Time of flight images
obtained after adiabatically ramping down the optical lattice.
The characteristic density increases from left to right. (a) Image
of 3500 atoms per spin state and a potential depth of the optical
lattice of 5Er. Images (b)–(e) were obtained with 15 000 atoms
per spin state. The potential depths of the optical lattices were
(b) 5Er, (c) 6Er, (d) 8Er, and (e) 12Er. The images show the
optical density (OD) integrated along the vertically oriented z
axis after 9 ms of ballistic expansion.
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FIG. 6 (color). (a) Reciprocal lattice and Brillouin zones for
the two-dimensional Bravais lattice of Fig. 4(a). (b) False color
image of the experimentally measured band population of a
dephased Bose-Einstein condensate in a 12Er deep optical lattice
where phase coherence between neighboring lattice sites has
been lost.
scattering, the measurement of the interference pattern is
less suitable to quantitatively analyze the coherent fraction
of atoms in the lattice.

The dephasing of the condensate wave function in the
optical lattice becomes clearly visible when we introduce
an external perturbation by switching off the magnetic
trapping field and thereby exposing the atoms to the linear
gravitational potential. For a 12Er deep optical lattice and
2 ms after switching off the magnetic field we can no longer
observe an interference pattern in the density distribution
of the released atoms. This indicates that phase coherence
of the atoms across the lattice has been lost. To experimen-
tally determine which energy bands are populated by the
dephased Bose-Einstein condensate, we ramp down the op-
tical potential in 2 ms, after the 2 ms hold time in the pure
optical potential. This ramp speed ensures that we are adi-
abatic with respect to the atomic motion in a single lattice
site and preserve the band population. The momentum
distribution of the atomic cloud is obtained by imaging the
atoms after 12 ms of ballistic expansion. Atoms originat-
ing from the lowest energy band are then expected to ob-
tain momenta that lie within the first Brillouin zone of the
lattice [17]. The Brillouin zones of a two-dimensional Bra-
vais lattice are displayed in Fig. 6(a). The experimentally
measured momentum distribution shown in Fig. 6(b) ex-
hibits a pronounced squarelike momentum distribution of
width 2h̄k coinciding with the first Brillouin zone of the
Bravais lattices. This proves that the atoms from the de-
phased condensate populate only the lowest energy band of
the lattice and remain in the radial ground state of a single
lattice tube even if the phase coherence between neighbor-
ing lattice sites has vanished.

Employing the same method we have measured the band
population in the combined potential of the magnetic trap
and the optical lattice. For a 12Er deep lattice and after
a storage time of 1 s we find that 60% of the initial num-
ber of atoms are still present and that all of these atoms
remain confined to the first energy band. For the same pa-
rameters no significant condensate fraction was measured
(see Fig. 5). So far, we cannot identify whether axial ex-
citations are present in a single lattice tube.

In conclusion, we have created an experimental system
which now enables us to study the physics of ultracold 1D
quantum gases (see also [18]). A variety of fundamental
questions of the physics in reduced dimensions can now
be addressed in the experiment. The correlation properties
of 1D quantum gases are intrinsically different from those
encountered in 3D. It is expected that in a 1D gas the de-
crease of temperature leads to a continuous transformation
of the correlation properties from the ideal gas case to the
regime which is dominated by quantum statistics and in-
teractions [4]. In the extreme limit of low atomic densities
or large interactions even the character of the bosonic par-
ticles changes and the gas acquires Fermi properties [1–5].

By adding a further standing wave laser field we can
extend the geometry of the lattice to three dimensions.
This should pave the way towards the observation of a
quantum phase transition in a dilute gas of atoms from
a superfluid to a Mott insulator phase [19]. We believe
that straightforward modification of our experiment should
allow us to reach this regime.
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

directions.
The measurement of the band population demonstrates that it is possible to homogenously

populate the lowest energy band while having no population in higher bands. In a tight
binding picture this corresponds to a situation where in each lattice site only the vibrational
ground state is occupied by the condensate, but the phase correlation between the sites is
lost.

Populating higher energy bands

We can populate higher energy bands in the lattice by using stimulated Raman transitions,
where states in different energy bands are connected by a stimulated two-photon process
[80, 81]. In order to drive the transition we apply two Raman beams to the atoms in the lattice
(Figure 3.21b). The frequency difference �!r = �E/h̄ between the beams corresponds to
the energy difference �E between the Bloch states. The Raman beams are detuned by �r

with respect to an atomic transition. By changing the angle between the two beams the
momentum transfer �q of the Raman beams can be arbitrarily chosen between 0h̄kr and
2h̄kr, where kr denotes the norm of the k-vector of the Raman beams. Therefore Bloch
states in all bands and with arbitrary quasi momenta can be populated.

In a tight binding picture the Raman beams induce transitions between vibrational levels
of each potential well (see 3.21a) and the change of the quasimomentum �q corresponds to
the simultaneous change of the relative macroscopic phase between lattice sites.

(a) (b) (c)

Figure 3.21: Population of higher energy bands. (a) Higher vibrational levels on each lattice
site can be populated by stimulated Raman transitions. (b) In a Bloch picture this corre-
sponds to Raman transitions between different energy bands. (c) Measured band population
of a dephased BEC in a 2D lattice, where higher energy bands have been populated by stim-
ulated Raman transitions. Therefore population of the corresponding higher Brillouin zones
is visible.
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sequence of two radio-frequency pulses. By lowering the
depth of the optical trap on a time scale of 2 s we further
evaporatively cool the potassium gas. This is done at a bias
magnetic field of B ! 227 G, which is well above the
magnetic Feshbach resonance centered at B0 ! 202:1 G
[1], and the s-wave scattering length between the two
fermionic spin states is a ! 118a0 (a0 is the Bohr radius).
At the end of the evaporation we reach temperatures be-
tween T=TF ! 0:2 and 0.25 with 5" 104 to 2" 105 par-
ticles, respectively.

Prior to loading the atoms into the optical lattice we tune
the magnetic field to B ! #210$ 0:1% G, such that the
s-wave scattering length between the two states vanishes.
Then the standing wave laser field along the vertical z axis
is turned on. Subsequently, the optical dipole trap along the
y axis is turned off and a standing wave laser field along the
same axis is turned on, followed by the same procedure
along the x axis. In order to keep the loading of the atoms
into the lattice as adiabatic as possible the intensities of the
lasers are slowly increased (decreased) using exponential
ramps with time constants of 10 ms (25 ms) and durations
of 20 ms (50 ms), respectively.

In its final configuration the optical lattice is formed by
three orthogonal standing waves with mutually orthogonal
polarizations and 1=e2 radii of 50 !m (x axis) and 70 !m
(y axis and z axis), which are derived from the same lasers
as for the optical dipole trap. The laser fields of the three
beams have a linewidth of the order of 10 kHz and their
frequencies are offset with respect to each other by be-
tween 15 and 150 MHz. The resulting optical potential
depth Vx;y;z is proportional to the laser intensity and is
conveniently expressed in terms of the recoil energy Er !
!h2k2=#2m%, with k ! 2"=# and m being the atomic mass.
The lattice depth was calibrated by modulating the laser
intensity and studying the parametric heating. The calibra-
tion error is estimated to be <10%.

The potential created by the optical lattice results in a
simple cubic crystal structure and the Gaussian intensity
profiles of the lattice beams give rise to an additional
confining potential which varies with the laser intensity.
As a result, the sharp edges characterizing the T ! 0
distribution function for the quasimomentum in the homo-
geneous case [19] are expected to be rounded off. A
quantitative picture can be obtained by considering a
tight-binding Hamiltonian to describe noninteracting fer-
mions in an optical lattice with an additional harmonic
confinement [20]. At T ! 0 the inhomogeneous system
is characterized by the total atom number N and by the
characteristic length $ over which the potential shift due to
the harmonic confinement equals the tunnel coupling ma-
trix element J. One finds $% !

!!!!!!!!!!!!!!!!!!!

2J=m!2
%

p

, with the fre-
quencies of the external harmonic confinement given by
!% (% ! x; y; z). The density distribution scaled by $% and
the momentum distribution of the atoms in the lattice
depend only on the characteristic density &c ! Nd3

$x$y$z
,

where d is the lattice spacing [7]. For a three-dimensional

lattice with 20" 20" 20 sites we have numerically calcu-
lated the characteristic density for the onset of a band
insulator to be &c ’ 60. For this value of &c the occupation
number at the center of the trap is larger than 0.99. It has
been pointed out that a fermionic band insulator in an
optical lattice with confining potential constitutes a high
fidelity quantum register [21].

In the experiment we probe the population within the
first Brillouin zones by ramping down the optical lattice
slowly enough for the atoms to stay adiabatically in the
lowest band while quasimomentum is approximately con-
served [22]. We lower the lattice potential to zero over a
time scale of 1 ms. After 1 ms we switch off the homoge-
neous magnetic field and allow for a total of 9 ms of
ballistic expansion before we take an absorption image of
the expanded atom cloud. The momentum distribution
obtained from these time of flight images, shown in
Fig. 1, reproduces the quasimomentum distributions of
the atoms inside the lattice. With increasing characteristic
density the initially circular shape of the Fermi surface
develops extensions pointing towards the Bragg planes and
finally transforms into a square shape completely filling the
first Brillouin zone deeply in the band insulator. We have
observed population of higher bands if more atoms are
filled into the lattice initially. In Fig. 2 the experimental
data for momentum distributions along the line with qua-
simomentum qy ! 0 are compared to the results of nu-
merical simulations using the same characteristic densities.

When imaging the cloud along the x direction we find a
homogeneous filling of the band in the vertical (z) direc-
tion, probably due to the change in the harmonic confine-
ment while loading the lattice combined with the presence
of gravity. This asymmetry between the horizontal x, y, and
the vertical z directions vanishes when the gas approaches
the band insulating regime. We have examined the level of
adiabaticity of our loading scheme into the optical lattice
by transferring the atoms from the band insulator back into
the crossed beam dipole trap. There we find a temperature
of 0:35TF when the initial temperature prior to loading into
the lattice was 0:2TF.

We have studied the dynamic response of the noninter-
acting Fermi gas to a change in the characteristic density

a cb d

OD

0

0.04e

x

y

2 hk

FIG. 1. Observing the Fermi surface. Time of flight images
obtained after adiabatically ramping down the optical lattice.
The characteristic density increases from left to right. (a) Image
of 3500 atoms per spin state and a potential depth of the optical
lattice of 5Er. Images (b)–(e) were obtained with 15 000 atoms
per spin state. The potential depths of the optical lattices were
(b) 5Er, (c) 6Er, (d) 8Er, and (e) 12Er. The images show the
optical density (OD) integrated along the vertically oriented z
axis after 9 ms of ballistic expansion.
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FIGURE 2.10. Ligne supérieure : figure extraite de Greiner et al. (2001), obtenue
avec des atomes bosoniques de 87Rb placés dans un réseau carré à deux dimensions.
Ligne inférieure : figure extraite de Köhl et al. (2005), obtenue avec des atomes
fermioniques de 40K (sans interaction) placés dans un réseau cubique 3D.

4-4 Comment observer la structure de bande ?

La notion de branchement et de débranchement adiabatique d’un ré-
seau trouve également une application importante dans la technique de
band mapping, où l’on transfère le contenu des différentes bandes d’énergie
en présence du réseau vers des états d’impulsion bien définie en absence
du réseau. Il faut pour cela éteindre adiabatiquement le réseau pour qu’un
atome initialement dans un état de la bande n avec le quasi-moment q fi-
nisse dans l’état d’impulsion p = ~(q ± 2n~k). Le moyen le plus simple,
au moins à 1D, pour relier sans ambiguïté l’état initial  n,q à l’impulsion
finale p est d’utiliser le schéma de bande dépliée représenté sur la figure
2.5 (ligne du milieu).

Les photos montrées en figure 2.10, obtenues par le groupe de Munich,
constituent une des premières démonstrations de la visualisation de la
zone de Brillouin permise par cette technique. Pour la photo de gauche, on
part d’un réseau 2D profond (12 Er) pour lequel la largeur de la bande fon-
damentale (W0 ⇠ Er/20) est très petite devant le gap entre la bande n = 0
et la première bande excité n = 1 (�0 ⇠ 5 Er). On place dans le réseau

un gaz de bosons (87Rb) dont la température est intermédiaire entre ces
deux échelles d’énergie : W0 ⌧ kBT ⌧ �0. Le gaz remplit donc les états
 0,q de la première bande de manière uniforme, mais la population des
bandes excitées est négligeable. Après extinction adiabatique du potentiel,
les atomes sont libres et leur distribution d’impulsion est une fonction cré-
neau non nulle seulement entre �~k et ~k. Pour observer cette distribution
d’impulsion, il suffit de faire un temps de vol de durée tvol suffisamment
longue pour que le nuage s’étale d’une quantité grande devant sa taille
initiale : on obtient un segment d’atomes (un carré à deux dimensions, un
cube à trois dimensions) de longueur 2~ktvol/m.

Dans la photo de droite de la figure 2.10, on a délibérément peuplé les
bandes supérieures en appliquant une paire de faisceaux laser additionnels
qui créent une transition Raman entre la bande n et la bande n+1. Le temps
de vol révèle alors la population transférée dans ces bandes supérieures,
avec une répartition quasi-uniforme à l’intérieur de chaque bande.

Nous montrons sur la ligne inférieure de la figure 2.10 un résultat ob-
tenu pour des fermions sans interaction (40K) dans un réseau cubique 3D
par le groupe de T. Esslinger (Köhl et al. 2005). Du fait du principe de Pauli,
ces fermions (polarisés) remplissent peu à peu tous les états de la première
bande quand on augmente leur nombre (de droite à gauche). Sur l’image
"e", la bande est pleine (on a réalisé un isolant de bande) et la structure
carrée de la zone de Brillouin est parfaitement visible.

5 Propagation de paquets d’ondes

Une caractéristique essentielle d’un réseau optique est la relation de
dispersion En(q) associée à chaque bande. Dans ce paragraphe, nous mon-
trons comment extraire deux quantités physiques importantes liées à cette
relation : la vitesse de groupe d’un paquet d’ondes et la masse effective.
Nous terminons ce paragraphe en donnant quelques indications sur la
modification de l’interaction entre atomes due à leur localisation dans le
réseau.

Cours 2 – page 15

n = 0 only several bands

fermions in a 3D lattice
(Köhl et al. 2004)
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Wannier functions

Wannier functions are located around a given lattice site.
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Mott transition

Observation of the Mott insulator to superfluid transition (2002):
A competition between kinetic energy and interactions

Small V0/Erec

(small U/J)

Greiner et al.,
Nature 2002

Large V0/Erec

(large U/J)
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Mott transition

Mott shells in a lattice + harmonic trap (Greiner/Bloch 2011)

4 Quantum phase transition from a superfluid to a Mott insulator

are coupled. Therefore it is possible to define an effective local chemical potential

µi = µ − εi (4.9)

for the ith lattice site. If the change in the atom number between neighboring lattice sites is
small, the system will locally behave like a homogenous system. However, now the (local)
chemical potential in a certain area of the lattice is fixed instead of the density. Therefore
when the ratio of J/U is changed the system can locally cross the boundary between the
superfluid and the Mott insulator state (dashed arrow in 4.5a) instead of following the isoline
of density (solid arrow), even for a situation where the local density was not commensurate
in the beginning.

For such an inhomogeneous system the qualitative profile can be readily extracted from
the phase diagram. In the trap center the energy offset εi is zero and the local chemical po-
tential µi is equal to the total chemical potential µ. Going to the border of the atom cloud the
local chemical potential will continuously decrease. This radial gradient in the local chem-
ical potential leads to a shell structure with shells of Mott insulator regions and superfluid
regions in between (see Fig. 4.6).

SF

SF

SF

n=1

n=2

n=3

J/U

µ/
U

1.0

2.0

3.0

MI (n=1)

MI (n=1)

MI 
(n=1)

SF

SF

MI (n=1)

MI (n=2)

x

y

(a) (b)

Figure 4.6: The profile of the many body ground state in an inhomogeneous lattice with
an external confinement can qualitatively be extracted from a phase diagram (a). The arrow
denotes the profile from the trap center where µ is maximal to the border of the atom cloud
where µ=0. She shell structure of superfluid and Mott insulating shells in (b) can be readily
extracted from the phase diagram (a).

Based on a Gutzwiller calculation a more quantitative study of the inhomogeneous system
can be carried out. Jaksch et al. have calculated the density profile and the number fluc-
tuations for a one and two-dimensional inhomogeneous system [5]. The two-dimensional
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